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Frequency modulation (FM) and demodulation techniques are well established and

understood when implemented with analog circuits.  Recently, state-of-the-art digital

technology allows radio-frequency (RF) signals to be processed in the discrete-time

domain.  Modulated RF signals are digitally sampled and then demodulated in real time

using signal processing techniques and a digital signal processor (DSP).  A digital board

capable of these tasks is often termed a "digital radio."  This paper results from the

availability of a digital radio board.  The flexibility of DSP software allows a realization of

different demodulation schemes.  The purpose of this paper was to test this new

technology by implementing an FM demodulator using the digital radio.  A mathematical

algorithm was developed and translated into DSP software to implement the "digital FM

demodulator."  The testing of the digital FM demodulator provided a performance analysis

of the developed algorithm.  This paper addresses the detailed background, development,

and testing of a digital FM demodulator as implemented on a digital radio board.
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CHAPTER 1
INTRODUCTION

1.1  Background Overview

The breakthrough of high-speed digital signal processors (DSPs) have allowed

traditional analog systems to be realized with today's digital circuit technology.  The

advances in computer technology has bred a new realm of discrete-time computing

capability.  The decrease in chip area and increase in transistor density of computer CPUs

and DSPs have paved the way for the digital implementation of high-speed real-time

systems.

DSPs have become more popular and cost effective since their inception in the

early 1980s.  Therefore, the low-cost DSP is able to take the place of the traditional

microcontroller, unveiling more computing power and versatility at the same cost.  The

DSP is considered a "specialized" microprocessor, able to perform signal-processing tasks

efficiently.  Since most signal processing stems from the implementation of discrete-time

convolution, DSPs consequently have a very fast multiply-accumulate architecture.  DSPs

generally execute one instruction per clock cycle and embody a Harvard-type architecture.

Analog communication systems have been around for decades.  In 1918 Edwin H.

Armstrong invented the superheterodyne receiver circuit, and in 1933 he also invented the

concept of frequency modulation (FM).  Until recently, analog receivers and modulation

techniques have been unsurpassed in performance.  However, new technologies in digital

communications are utilized in developing high-speed modems, spread-spectrum systems,
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next-generation cellular radios, and many other digital systems that dwarf their analog

counterparts.

1.2  Design Motivation

Communication systems have traditionally used all analog circuits to recover

modulated radio-frequency (RF) signals.  Specifically, FM is a type of analog modulation

that requires an analog phase-locked loop (PLL) or slope detector for demodulation.  FM

and other demodulation techniques are well established and understood when implemented

with analog circuits.  Recently, state-of-the-art digital technology allows RF signals to be

processed in the discrete-time domain.  Hence, modulated RF signals are digitally sampled

and then demodulated in real time using signal processing techniques and a DSP.  A digital

board capable of these tasks is often termed a "digital radio".  The digital radio is the

digital counterpart of an analog superheterodyne receiver.

The motivation of this paper stems from the availability of a state-of-the-art digital

radio board.  Using the power and flexibility of the digital radio board, traditional analog

demodulators can be implemented in DSP software.  Since DSP software can be easily

changed, several "digital demodulators" can be written to implement different

demodulation schemes, such as FM, amplitude modulation (AM), or single-sideband

modulation (SSB).  The key point of interchangeable software demonstrates the

tremendous flexibility advantage a digital radio solution has over a single-task analog

receiver.

The advent of digital RF technology enables numerous analog systems to be

converted into one digital radio solution through the use of real-time signal processing

software.  Many large analog receivers can be replaced with one small digital board.

Custom demodulators are also easily implemented with the digital radio because of its

generic hardware architecture.
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The digital radio is in its research stage, and it has limited real-time demodulation

abilities.  The first step chosen to test this new technology is to implement an FM

demodulator using the digital radio.  FM is well established and is the backbone for many

other digital communication schemes, including the frequency-shift keying (FSK)

modulation family and the multilevel signaling modulation schemes.  A digital FM

demodulator provides a performance test for the digital radio.  These test results provide

some insight for the probable improvements to the digital radio architecture.

Consequently, this paper addresses the background, development, and testing of a digital

FM demodulator as implemented on a digital radio board.
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CHAPTER 2
CONVENTIONAL AND COMPLEX ANALOG FM DEMODULATION

This chapter reviews FM communications and conventional analog FM

demodulation in order to provide the theoretical framework necessary to develop a digital

FM demodulator.

2.1  Frequency Modulation and the FM Equation

Frequency modulation (FM) is a type of angle-modulated signal.  A conventional

angle-modulated signal is defined by the following equation.

X t w t tAngle c( ) cos( ( ) ) =   A    P  c

∆
+ (2.1)

where wc = the carrier frequency (rad/s)

Ac = constant amplitude factor

P(t) = the modulating input signal

m(t) = the original message signal

For FM, the relation of m(t) to P(t) is given by

P t D m dFM f

t
( ) ( )= ⋅

−∞z ξ ξ (2.2)

where Df is a constant measured in radians/volt-seconds.
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Taking the time derivative of both sides of Equation (2.2), it is readily seen that the

message m(t) is the derivative of the modulating signal P(t)FM.  Equation (2.4) results from

applying Leibniz's rule to Equation (2.3).

∂
∂

∂
∂

ξ ξ
t

P t D
t

m dFM f

t

( ) ( )  = ⋅
L

N
M

O

Q
P

−∞
z (2.3)

∂
∂

P t
t

D m tFM
f

( )
( )  = ⋅ (2.4)

By observing Equation (2.4), it can be seen that the instantaneous phase of an FM

signal is directly related to the message m(t).  The FM equation now takes the following

form:

 X t w t P t w t D m dFM c FM c f( ) cos( ( ) ) cos( ) =   A       A     ( )   c c
-

t∆
+ = +

∞
z ξ ξ (2.5)

The instantaneous frequency of the FM signal in Equation (2.5) is

w
P t

t
w D m tc

FM
c f+ + =  

∂
∂
( )

( ) (2.6)

Equation (2.6) reveals that the instantaneous frequency of an FM signal varies

about the carrier frequency wc directly proportional to the message signal m(t) [Cou90].

If m(t) is a sinusoid, then the amplitude and frequency of the message determines the

frequency of the cosine carrier function.

The amount of deviation from the assigned carrier frequency wc is called the

frequency deviation, or ∆F.  The frequency deviation is also related to the message m(t) by

the equation

∆F
P t

t
FM= L

NM
O
QP

 
1

2π
∂

∂
( )

(2.7)
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Note that ∆F is a non-negative number measured in Hertz.  The maximum

frequency deviation of an FM signal, denoted ∆Fmax, is directly proportional to the

amplitude of the input signal.  The equation for maximum frequency deviation is given

below.

∆F D m tfmax max ( )= ⋅ 
1

2π
(2.8)

Equation (2.8) makes it obvious that an increase in the message m(t) amplitude

creates an increase in the maximum frequency deviation.  The increase in frequency

deviation also increases the bandwidth of the FM signal.

The important relationship established above is that the instantaneous frequency of

an FM signal can be used to directly recover the original message m(t).

Finally, the real FM equation can also be represented as a complex FM signal

through the Euler identity.  Recall Equation (2.5)

X t w t P tFM c FM( ) cos( ( ) ) =  A     c +

which can be written as

X t A e e A eFM c
j P t j w t

c
j w t P tFM c c FM( ) Re Re( ) ( )           = ⋅ = ⋅⋅ ⋅ +o t (2.9)

2.2  FM Demodulation Using Slope Detection

 One type of conventional analog FM demodulation is achieved by determining the

instantaneous frequency of an FM generated signal.  In theory, an ideal frequency

modulation (FM) detector is a device that produces an output that is proportional to the

instantaneous frequency of the input.  A common method of analog FM demodulation is

called slope detection.  Slope detection is a type of FM-to-AM conversion.  Figure 2.1
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shows a block diagram of a typical analog FM demodulator using slope detection

[Cou90].

Limiter BPF Differentiator
Envelope
Detector

FM input
Demodulated
     output

vin(t) vout(t)

Figure 2.1  FM Demodulation for an Analog System Using Slope Detection

The slope detection method revolves around a differentiation operation that

exploits the instantaneous frequency of the FM signal.  The FM input signal is first

subjected to a limiter in order to eliminate any amplitude modulation (AM) noise present

in the signal.  The output of the limiter is a square wave with constant amplitude.  The

square wave is then sent through the bandpass filter (BPF).  The BPF has a center

frequency of wc and a bandwidth equal to the bandwidth of the FM signal.  The BPF

filters out the square wave harmonics and returns a constant-amplitude sinusoid.  The

constant-amplitude FM signal is then differentiated.  The differentiation of the cosine

carrier function exploits the instantaneous frequency of the FM signal by the property of

the chain rule.  Now, the instantaneous frequency can be thought of as the time-varying

amplitude of the cosine carrier function.  The instantaneous frequency is converted to an

AM signal riding on top of the FM carrier function.  This is where the principle of FM-to-

AM conversion originates.  The last step is to subject the differentiated FM signal to an

envelope detector.  The envelope detector extracts the amplitude, or envelope, of the

input signal of interest.  In the slope detection case, the extracted envelope is the
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instantaneous frequency of the FM signal, which contains the original message m(t).  In

conclusion, FM demodulation using slope detection recovers the original message m(t) by

determining the instantaneous frequency of the FM signal.

2.3  Derivation of a Complex FM Signal at Baseband

An FM signal at baseband, or zero frequency, is the result of "mixing out" the

carrier frequency from the FM signal, as shown in Figure 2.2.  Thus, the carrier frequency

no longer appears in the FM equation.  In this paper, the availability of a complex-valued

baseband FM signal is the major advantage in designing the digital FM demodulator.  For

this reason, the representation of a complex-valued FM signal at baseband is derived.

Figure 2.2 depicts the generation of a complex baseband FM signal from a conventional

FM signal.

The generation of complex data is the result of mixing the FM signal with a cosine

and sine local oscillator (LO).  This process can be derived mathematically by using the

complex version of the FM equation.  The mixing process is a simple multiplication of

signals.  The cosine mixing term and sine mixing term are multiplied with the incoming FM

signal.  For baseband results, both mixers oscillate at the FM carrier frequency wc.  The

total mixing operation produces a real (in-phase) and imaginary (quadrature-phase)

baseband component.
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LPF

LPF

c

j [ w   t  + P(t)    ]
e FM }

FM input signal:

sin(w  t)
c

cos(w  t)
c

I

Q

In-phase
Baseband
Component

Quadrature-phase 
Baseband 
Component

cRe{A

Figure 2.2  Generation of a Complex Baseband FM Signal

Adding the in-phase and quadrature-phase baseband components results in the

complex baseband FM signal.  The derivation of these components is accomplished with

the aid of Figure 2.2.  The symbol ⊗  below denotes a mixing (multiplication) operation.

2.3.1  In-Phase Baseband Component

In-phase component =  Re cos( )( )A e w tc
j w t P t

c
c FM⋅ ⊗+     (2.10)

Using the identities: Re z
z z

  = + ∗

2
, where z is a complex number

cos( )x
e ejx jx

= + −

 
 

2
, Euler's identity

gives

=  
A e e e ec

j w t P t j w t P t
jw t jw tc FM c FM

c c
         

 
+ − + −+

⋅ +
( ) ( )o t

2 2
(2.11)

=  
A

e e e ec j w t P t jP t jP t j w t P tc FM FM FM c FM

4
2 2         + − − ++ + +( ) ( ) ( ) ( )o t (2.12)

=  
A

e ec j w t P t jP tc FM FM

2
2⋅ ++Re Re( ) ( )     o t m r (2.13)
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For conventional FM signals, the carrier frequency wc is much greater than

message frequency m(t).  The first complex exponential term in Equation (2.13) is the up-

converted term since its carrier frequency has been translated to a frequency of 2wc.  The

second complex exponential term in Equation (2.13) is the down-converted term since its

carrier frequency has been translated to zero frequency.  Reviewing Figure 2.2 and using

the fact that wc >> wm(t), the low-pass filter extracts the down-converted (baseband) term

and filters out the up-converted term.  Thus, the real baseband component of the FM

signal can be represented by the following equation.

In-phase baseband component  =  
A

ec jP t FM

2
⋅ Re ( ) (2.14)

2.3.2  Quadrature-Phase Baseband Component

Quadrature-phase component =  Re sin( )( )A e w tc
j w t P t

c
c FM⋅ ⊗+    (2.15)

Using the identities: Im z
z z= − ∗

 
2

,  where z is a complex number

sin( )x
e e

j

jx jx

= − −

 
 

2
, Euler's identity

=  
A e e e e

j
c

j w t P t j w t P t
jw t jw tc FM c FM

c c
       

 
+ − +

−−
⋅ −

( ) ( )o t

2 2
(2.16)

=  
A
j

e e e ec j w t P t jP t jP t j w t P tc FM FM FM c FM

4
2 2        + − − +− + −( ) ( ) ( ) ( )o t (2.17)

=  
A
j

e ec j w t P t jP tc FM FM

2
2⋅ −+Im Im( ) ( )     o t m r (2.18)

Reviewing Figure 2.2, the low-pass filter extracts the down-converted (baseband)

term in Equation (2.18) and filters out the up-converted term in Equation (2.18).  Thus,

the imaginary baseband component of the FM signal can be represented by the following

equation.
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Quadrature-phase baseband component  =  j
A

ec jP t FM

2
⋅ Im ( ) (2.19)

Now, the complex baseband FM signal can be written as the sum of Equations

(2.14) and (2.19), the in-phase and quadrature-phase baseband components.

X t
A

e j eFM
c jP t jP t

baseband

FM FM( ) Re Im( ) ( )        = ⋅ +
2

m r m r (2.20)

or,

X t
A

P t j P t eFM
c

FM FM
jP t

baseband

FM( ) cos ( ) sin ( ) ( )        
A

 c= ⋅ + =
2 2

m r (2.21)

The design of the digital FM demodulator hinges on Equation (2.21).  This

complex baseband FM equation will be referred to during the FM demodulator

development phase.  By inspection of Equation (2.21), the complex FM signal at baseband

is represented as a complex exponential function with a varying frequency directly related

to P(t)FM.  The complex baseband FM signal can also be demodulated using standard

analog methods.  A demonstration of complex baseband FM demodulation by the slope

detection method is presented next.

2.4  Analog FM Demodulation of a Complex FM Signal at Baseband

With the aid of Figure 2.1, the demodulation of the complex baseband FM signal

using the slope detection method is presented.  Recall the complex baseband FM equation

from Equation (2.21).

X t eFM
jP t

baseband

FM( ) ( )    
A

 c=
2
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The input signal first passes through the limiter circuit.  Assume that the limiter

transforms the input signal to a square wave with amplitude Vc.  At the output of the

BPF, the FM signal is recovered and takes the form.

X t eFM
jP t FM( ) ( )

limiter-bpf
    V  c= (2.22)

Following Figure 2.1, the signal next passes through the differentiation block.

After differentiating, the FM signal can be represented by

X t j
P t

t
eFM

FM jP t FM( ) (
( )

) ( )
lim-bpf-diff

   V  c= ⋅∂
∂

(2.23)

The last block in Figure 2.1 is the envelope detector.  The envelope detector

extracts the magnitude of the signal.

X t j
P t

t
e

P t
tFM

FM jP t FMFM( ) (
( )

)
( )( )

lim-bpf-diff-ed
    V   Vc c= ⋅ = ⋅∂

∂
∂

∂
(2.24)

Recall from Equation (2.4), the original message m(t) is the derivative of P(t)FM.

Thus, the demodulated result is

 X t D m tFM f( ) ( )
demodulated

    Vc= ⋅ ⋅ (2.25)

or,

X t m tFM( ) ( )
demodulated

    C= ⋅ (2.26)

where C is a constant value.

Equation (2.26) proves that demodulating a complex analog baseband FM signal

using the slope detection method yields the original message m(t).  This conclusion is used
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to justify the algorithm development of the digital FM demodulator.  Hence, the

theoretical foundation for the digital FM demodulator development has been established

using an analog approach.
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CHAPTER 3
DIGITAL RADIO HARDWARE AND SYSTEM ARCHITECTURE

This chapter discusses the system architecture and major hardware components on

the digital radio board.  Recall, the FM demodulator algorithm design revolves around the

availability of complex-valued baseband digital data from the digital radio hardware.  This

demonstrates a classic case of designing software around the capabilities of the available

hardware.

3.1  The Single-Channel Digital Radio

3.1.1  Architectural Overview

The digital radio is a single-channel communications-based receiver.  Different

from its analog counterpart, the digital radio consists of all digital components and

performs all signal processing without traditional analog circuitry.  The digital radio is able

to process narrowband signals extracted from a digitized wideband RF source [Gra91].

The architecture of the digital radio board provides a flexible radio-frequency (RF)

receiver that is controlled strictly through software.  The receiver has the advantage of

processing RF signals in the digital domain, which allows digital signal processing (DSP)

methods to be employed.  This versatile architecture dwarfs the analog receiver in that one

digital radio can be programmed to perform unlimited tasks which are custom to the user.

The digital radio architecture is a flexible microprocessor-based design centered

around a Gray GC1011 digital receiver chip.  The GC1011 chip is responsible for

receiving the incoming RF digitized data, down converting it to baseband, lowering the
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sampling rate of the data, and piping it to a host processor for computation and

processing.  A generic block diagram of a digital radio architecture is shown in Figure 3.1

[Gra91].

High-speed
A/D converter

Gray GC1011

digital receiver
chip

Peripheral interface

Host DSP

Boot software

DAC

RF antenna
    input

Analog output

Figure 3.1  Single-Channel Digital Radio Block Diagram

3.1.2  Major Hardware Components of the Digital Radio

The digital radio board is a surface-mount design (SMD) printed-circuit (PC)

board and runs at a clock speed of 50 MHz.  The SMD is needed to realize a high-speed

digital board with clock speeds in this range.  A general overview of the major

components are described below.  These components implement the major blocks shown

in Figure 3.1.

High-speed analog-to-digital converter

  The analog-to-digital (A/D) converter used in the digital radio is a high-speed

Analog Devices 100 Msamples/second ECL flash A/D with 8-bit resolution.  It is clocked

at 50 MHz, feeding 50 Msamples/second of digital RF data to the GC1011 digital receiver

chip.  The flash A/D was necessary to obtain the conversion speeds needed for the
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GC1011.  A small analog circuit is located before the A/D converter to precondition the

incoming RF analog signal and to maintain a stable reference voltage for the A/D.

Gray GC1011 digital receiver chip

 The Gray GC1011 digital receiver chip is the heart of the digital radio.  It is

responsible for processing the incoming wideband RF digital data and sending the

resultant narrowband output data to the host processor for analysis.  The GC1011

receives its digital RF data from the high-speed A/D converter.  The GC1011 can receive

12-bit input data samples but is constrained to 8-bit input data due to the hardware

limitations of a 12-bit flash A/D at the time of the board construction.  The GC1011 is

controlled by a host processor via the peripheral interface.  The host processor configures

the GC1011 by writing to control registers onboard the GC1011.  There are sixteen 8-bit

control registers that can be accessed through the GC1011's bi-directional data lines.  The

four address lines of the GC1011 are used to address the desired control register.  Some

major GC1011 functions that the host processor is able to control include the following:

GC1011 tuning frequency, output data decimation rate, output data spectral formatting,

signal gain, and output data format.  A functional description of a typical GC1011 tasking

is listed below.

• The digitized RF data are received by the GC1011 and mixed with the tuning
frequency, which effectively down converts the RF signal to baseband.

• The baseband data are decimated via a programmable low-pass filter cascaded
with a decimate-by-four low-pass filter in order to lower the output bandwidth
of the signal.

• Finally, the data are formatted and sent to the host processor.  The data
formats include complex or real output data and flipping or offsetting the
output spectrum.
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Specifically, the major feature exploited from the Gray GC1011 digital receiver

chip is the generation of complex baseband data .  This is an important innovation used to

design the digital FM demodulator.

One limitation of the GC1011 is the ability to tune up to a maximum frequency of

half its operating clock rate.  Thus, at a 50 MHz clock speed, the digital radio can directly

digitize and tune to RF frequencies from 0 to 25 MHz.  The GC1011 is a memory-mapped

peripheral in the host processor's external memory map.  The host processor configures

the GC1011 and controls the GC1011 during program execution by communicating to the

command registers [Gra91].

Host processor

  The host processor for the digital radio is a one-instruction-per-cycle digital

signal processor (DSP) chip.  A fast DSP processor is needed to handle the flow rate of

data sent from the GC1011.  The DSP residing on the digital radio board is an Analog

Devices ADSP-2101, 16-bit fixed-point processor running at a 16 MHz clock (instruction)

rate.  The ADSP-2101 is a Harvard architecture RISC microprocessor, i.e., separate

program and data memories and respective memory maps.  All peripherals, including the

GC1011, are memory mapped into the ADSP-2101's external data memory map.  The

DSP directly retrieves parallel digital data from the GC1011 and is able to send the

processed results to a digital-to-analog converter (DAC) for analog output.  The DSP

runs the operating system software and performs all housekeeping and computational

tasks for the digital radio board.  On powerup or system reset, the DSP automatically

boots from an onboard EPROM that contains its tasking software [Ana90].
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Digital-to-analog converter

 The back-end digital-to-analog converter (DAC) is a Burr-Brown 12-bit dual

converter.  It is used to retrieve the processed digital data from the DSP and convert it to

an analog output.  The output sample rate for the DAC is set by the host processor.  The

host writes the desired sample time to a hardware timer that is connected to the DAC load

lines.  This architecture allows the DAC timer to interrupt the processor when it times out.

This hardware methodology achieves a stable, constant sampling interval that is not

software dependent.  In this design, the demodulated FM data was sent from the host

processor to the DAC for analog audio output.

 3.2  Performance Capabilities of the Digital Radio

3.2.1  Capturing High-Frequency RF Signals with the Digital Radio

 An inherent bottleneck of the digital radio surfaces when targeting very-high

frequency (VHF) and ultra-high frequency (UHF) signals.  In order to process VHF and

UHF radio signals, a front-end analog down converter must be used in conjunction with

the digital radio in order to down convert the band of interest into the GC1011's tuning

range.  Recall, the GC1011 can only directly tune up to a maximum frequency of 25 MHz

with a 50 MHz clock rate.  This specification limits the range of frequencies accessible to

the digital radio board.  Specifically, any frequency over 25 MHz cannot be received by

the digital radio without the use of a front-end analog down converter.  For this paper, this

was not a problem since the FM modulated signal was generated with a carrier frequency

within the GC1011 tuning range.  However, in practical use this problem can be alleviated

by using a standard VHF/UHF receiver as the down converter.  The intermediate

frequency (IF) output from the VHF/UHF receiver can be used as the GC1011's tune
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frequency.  The two most common IF frequencies for FM systems are 10.7 MHz and 21.4

MHz.  The GC1011 can directly tune up to either of these IF frequencies.  The output IF

frequency from the VHF/UHF receiver is just the down-converted term of the RF signal.

Hence, this IF frequency can be used as the RF input to the digital radio, while the

GC1011 tune frequency is set to the VHF/UHF receiver's IF frequency.  Since the

GC1011 is constantly tuned up to the IF, the digital radio can now process any frequency

the front-end VHF/UHF receiver can supply.

3.2.2  Advantages and Disadvantages of a Digital Radio Architecture

The digital radio performs signal processing tasks via software.  This software is

run by the host DSP processor, which configures the hardware on the board and performs

all computational tasks relevant to the desired signal processing task.  Thus, by changing

the DSP software, the digital radio effectively becomes a custom narrowband receiver.

Multiple narrowband demodulators, modems, or communication-based algorithms can be

easily implemented on the digital radio.  This exemplifies the digital radio's signal

processing flexibility over the conventional single-task analog receiver.

  However, there are a few drawbacks to a digital radio architecture at this phase.

First, it is unable to tune up to VHF or UHF signals without the help of an analog down

converter.  Secondly, only narrowband signals can be processed from a wideband RF

input.  The processing speed of the DSP and GC1011 limits the computational throughput

of the radio.  For these reasons, wideband signal processing is generally not feasible using

the current design of the digital radio architecture.
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3.3  Overview of the Gray GC1011 Digital Receiver Chip

Because of the importance of the GC1011 digital receiver chip in the digital FM

demodulator design, a block diagram illustrating the major functions of the GC1011 is

presented.  A block diagram of the GC1011 is shown in Figure 3.2.
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FILTER
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Figure 3.2  Block Diagram of the GC1011 Internals

A brief description of each of the major blocks in Figure 3.2 is presented to

introduce the novel hardware functionality of the GC1011.

3.3.1  Control Interface

The control interface allows an external host processor to communicate with the

GC1011's internal registers.  The host processor is able to configure the GC1011 by

writing to the registers in the control interface.  The control interface consists of sixteen 8-

bit registers, which are addressed using the GC1011 data bus and address lines.  The
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GC1011 has eight bi-directional data lines (D7-D0) and four address lines (A3-A0).  An

active low chip select (/CS) and read/write pin (R/W) are used to access the chip using

standard memory-mapped peripheral protocols.  Also, the resulting 16-bit real (I) and

imaginary (Q) data from the GC1011 is read by the host processor by accessing the proper

data control registers [Gra91].  Because the GC1011 is limited to an 8-bit data bus, this

requires four parallel register reads in order to assemble the 16-bit I and Q output samples.

3.3.2  Digital Oscillator and Mixer

The digital oscillator is responsible for generating the sine and cosine discrete

sequences which are mixed with the incoming digital data X11-X0.  The digital oscillator

consists of a 28-bit frequency register, accumulator, and sine-cosine digital word

generator.  The tuning frequency of the digital oscillator is set by loading the frequency

register with the calculated tuning frequency using the below equation [Gra91].

FREQ  
Desired tuning freq.)

Clock rate
= 228(

(3.1)

where FREQ is the 28-bit frequency register.  The FREQ register is loaded by writing a

frequency word from the host processor to the frequency register in the digital oscillator.

The upper 13 bits of the 28-bit FREQ word are used to generate the digital

oscillator's sine and cosine digital sequences.  The resulting digital samples are rounded to

12 bits.  Using the 6-dB rule [Cou90], this allows a maximum of 6(12) = 72 dB of

spurious free dynamic range for the oscillator.

The digital mixer simply multiplies the incoming 12-bit samples (X11-X0) with the

12-bit sine and cosine sequences.  The output of the mixer is a digital sequence at zero

frequency.  Thus, mixing an input signal with its carrier frequency equal to the digital
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oscillator's tuning frequency results in a baseband digital sequence.  In other words, the

input sequence is centered at zero frequency after passing through the mixer.

3.3.3  Programmable Low-Pass Filter

The output of the mixer is fed into a programmable low-pass filter in order to

isolate the down converted baseband sequence.  The filter also decimates the sequence.  In

other words, the filter lowers the sample rate of the sequence by a factor of D [Gra91].

The value of D can range from 16 to 16,384.  This parameter is configured by writing to

the BANDWIDTH control register [Gra91], which is illustrated in Figure 3.2.

3.3.4  Decimate-by-Four Low-Pass Filter

The decimate-by-four filter is a fixed low-pass finite-impulse-response (FIR)

decimation filter that further decimates the baseband sequence by four after the initial

programmable low-pass filter.  The total sample rate reduction is therefore 4D.

  Because of the initially high incoming sample rate, the reduction is necessary in

order to process the embedded modulated signal in real time.  Because of the possibility of

aliasing, the reduced sample rate must still meet Nyquist's criteria.  In other words, the

output sequence from the final decimation filter must still maintain a sample rate at least

two times the maximum frequency in the modulated signal.  Obviously, this decimation

parameter depends on the bandwidth of the desired demodulated signal.  Control registers

GAIN and FILTER SELECT exist to correct the filter gain and select one of two FIR

decimation filter types.  The decimation filter can either have a 3 dB passband with 70 dB

attenuation in the stop band covering 80% of the Nyquist rate, or a 3 dB passband with 50

dB attenuation in the stop band covering 90% of the Nyquist rate [Gra91].
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3.3.5  Output Format

The output format block receives the resulting samples from the lowpass filter

network.  The output samples are rounded to 16 bits, and the output spectrum is

optionally flipped, converted from a complex to a real spectrum, or offset by one-fourth

the Nyquist rate [Gra91].  The control word written to the filter control register governs

the formatting of the output samples.  The resulting 16-bit I and Q samples are sent to the

output storage registers for the host to access.  Due to the 8-bit data bus, the host must

perform four parallel reads to retrieve one complex sample from the GC1011.  Moreover,

the digital radio board has no GC1011 interrupt capability, so the host must "poll" the

GC1011 in software to determine when a new sample is ready.  The ramifications of

software polling is a decrease in the DSP real-time processing window.  A software

polling loop requires more DSP instructions than an interrupt-service subroutine, causing

the decrease in the real-time processing window.  Other important implementation issues

and inherent hardware limitations are discussed in later chapters.
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CHAPTER 4
ALGORITHM DEVELOPMENT OF THE DIGITAL FM DEMODULATOR

This chapter discusses the development of the digital FM demodulator using the

theoretical and hardware foundations discussed in the previous chapters.  In order to

demodulate a digitally-sampled FM signal, a digital method of determining the

instantaneous frequency of the sampled FM signal is needed.  Chapter 2 presented the

analog approach of demodulating a complex-valued FM signal at baseband.  These

mathematical steps will be transformed into their digital equivalents, creating a digital FM

demodulator.  The end result of this chapter is to fabricate a fast digital FM demodulator

able to run on the digital radio's DSP.  Therefore, the attributes of the digital radio board

also governs the design strategy for the demodulator.

4.1  Complex Vector Representation

Figure 4.1 displays the complex Cartesian coordinate system and the complex unit

circle |z| =1.  From Equation (2.21), the complex equation for an FM signal at baseband, a

complex-valued FM sample can be represented by a vector on the complex unit circle

having an amplitude and a phase angle.  A complex sample gives two pieces of

information, a real and imaginary component.  The polar form of a complex number z,

where z = x + j y, can be represented by the following equations.

z r e j   = ⋅ θ (4.1)

r x y  = +2 2 (4.2)

θ   
y
x

= −tan 1 (4.3)
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Figure 4.1 labels the quadrants in the complex coordinate system the same as the

standard Cartesian rectangular system.

 r 

Point (x,y)

Re(z)

Im(z)

Quadrant IQuadrant II

Quadrant IVQuadrant III

j

-1

-j

1

Figure 4.1  Complex Coordinate System

The polar form of a complex number, shown in Equation (4.1), can be used to

extract the phase angle of a complex sample.  Each incoming complex sample will have a

new amplitude and phase angle.  Since FM signals store all of their information in the

phase, this chapter proves that the phase angle is the information required to demodulate a

complex-sampled FM signal.

Successive complex-valued samples can be shown to "rotate" around the complex

unit circle in Figure 4.1.  For example, if a sinusoid with a constant frequency is complex

sampled, each consecutive sample can be represented as a vector rotating around the
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complex unit circle.  The degrees of advancement between consecutive samples can be

expressed by the following equation.

∆θ  =  
frequency of signal

sample rate
⋅ 3600  (4.4)

Equation (4.4) is used to directly relate the phase difference between two complex-

valued samples.  In the previous example, suppose the sinusoid is sampled at a rate eight

times greater than its frequency.  Applying Equation (4.4), each vector will travel

(1/8)(360°) = 45° from the previous sample's location.  Furthermore, at the Nyquist

sampling rate, or 2fmax, each successive vector will travel 180° from the last vector's

position.  The previous finding demonstrates the key result of the sampling theorem

[Str88].  In order for aliasing not to occur in the sampled signal, consecutive vectors

cannot advance more than 180°.

4.2  Mathematical Modeling of the Digital FM Demodulator

4.2.1  The Polar Discriminator

As stated in the above section, the phase angle contains the necessary information

needed to demodulate a complex-sampled FM signal.  Chapter 2 presented the

mathematical foundation supporting this method of FM demodulation for complex FM

signals at baseband.  Specifically, determining the instantaneous frequency of the FM

signal recovers the original message.

One approach for determining the digital instantaneous frequency of a complex-

sampled FM signal is by using a polar discriminator.  A polar discriminator measures the

phase difference between consecutive samples of a complex-sampled FM signal.  This

phase difference turns out to be the instantaneous frequency of the sampled FM signal.
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A polar discriminator operates by taking successive complex-valued samples and

multiplying the new sample by the conjugate of the old sample.  Consider two consecutive

complex-valued baseband FM samples with unity magnitude and phase angles Θ1 and Θ2,

respectively.  The polar discriminator can be represented mathematically in polar form by

using Equation (2.21).

FM ebaseband
j

 1
   = θ1 (4.5)

FM ebaseband
j

 2
   = θ2 (4.6)

e   e  e   ( )    ( )   (   )j j j⋅ − ⋅ ⋅ −⋅ =θ θ θ θ2 1 2 1 (4.7)

Equation (4.7) is the result of the polar discriminator.  The polar discriminator

takes two complex-valued samples with different phase angles and returns the phase

difference between the samples.  Note that the difference operation in the digital domain is

an approximation of a time differentiation in the analog domain.  For discrete-time systems

this differentiation can be represented as a backward-difference equation similar to the

equation below [Str88].

[ ]∂
∂
f t

t T
f nT f n T

( )
( ) (( ) )   ≈ − −1

1 (4.8)

In Equation (4.8), f(t) is a continuous function, T is the sampling period, and n is a

positive integer.  Equation (4.8) reveals that the difference operation in Equation (4.7)

approximates the derivative of the FM phase.  Actually, using the concepts of finite-

difference calculus shows that Equation (4.8) is exact for first-order functions.1 

Therefore, the polar discriminator in Equation (4.7) calculates the exact phase derivative

for signals with first-order frequency characteristics.  A polar discriminator returns the

                                               
1 From William Hager, "Numerical Analysis Lecture Notes", University of Florida, 1992.
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exact phase derivative for sinusoids with a constant frequency.  Moreover, a sinusoid with

a varying frequency (i.e., an FM signal with a sinusoidal message) causes the polar

discriminator to return an approximation of the phase derivative.  This differentiation error

is due to the fact that Equation (4.7) is no longer exact for phase functions greater than

first order.  However, if the sampling period T is made sufficiently small, it can be shown

that a nonlinear function exhibits a linear behavior between closely-spaced sample points

[Str88].  Thus, a small sampling period T increases the accuracy of the polar discriminator

for a sinusoidal input with a nonlinear frequency.

Equations (2.4) and (4.7) show that the calculated derivative from the polar

discriminator is equivalent to the instantaneous phase of the sampled FM signal.  This

instantaneous phase is synonymous with the instantaneous frequency of an analog FM

signal.  Therefore, the phase difference between the two consecutive complex-valued FM

samples is the information needed to demodulate the sampled FM signal.  A signal flow

graph of a polar discriminator is displayed in Figure 4.2.

x(n)

z
-1

unit delay

z
*

y(n) = x(n) x  (n-1)*

conjugate

complex multiply

Figure 4.2  Signal Flow Graph of a Polar Discriminator

     The polar discriminator operates on a sample-by-sample basis.  When a new

complex sample arrives in the discrete-time system, a new phase-difference vector is
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calculated.  Some of the key characteristics of the polar discriminator when operating on a

sampled FM input signal are listed below.

• A sampled sinusoid with a constant frequency (no modulation) results in
vectors residing at the same location on the unit circle.  Recall the case of the
sampled sinusoid with a 45° advancement between samples.  By Equation
(4.7), the output of the polar discriminator is a vector with a phase angle equal
to 45°.  Therefore, subjecting an unmodulated sinusoid to a polar discriminator
produces vectors with a constant phase angle.  This constant phase angle can
be computed using Equation (4.4).

• The origin is equivalent to a vector with a phase angle equal to zero.  By
definition, a baseband FM signal is centered at zero frequency.  Thus,
subjecting a complex-sampled baseband FM signal to a polar discriminator
results in vectors that migrate about the origin.  Figure 4.3 displays the origin
as the line Im(z) = 0, Re(z) > 0.

• For a baseband FM signal, the polar discriminator vectors migrate about the
origin according to the frequency deviation of the FM signal.  At any point in
time, if the FM signal has a frequency greater than the carrier frequency wc,
then the polar discriminator vector resides in quadrant I or II and has a positive
phase angle.  Likewise, if the FM signal has a frequency less than the carrier
frequency wc, then the polar discriminator vector resides in quadrant IV or III
and has a negative phase angle.  Figure 4.3 demonstrates this concept for two
vectors residing in quadrants I and IV, respectively.

• The maximum attainable phase angle of a polar discriminator vector depends
on the sampling rate.  By the sampling theorem, if an FM signal is sampled at
the Nyquist rate or higher, then the polar discriminator vectors are constrained
to have phase angles less than 180°.

• If a baseband FM signal is oversampled at a rate of four times or greater, then
the polar discriminator vectors are constrained to rotate within quadrants I and
IV.  The sampling rate governs the number of degrees the polar discriminator
vectors migrate from the origin.  Therefore, using Equation (4.4), a four times
oversampling rate results in vectors deviating a maximum of 90° from the
origin.  Thus, increasing the sampling rate decreases the distance (in degrees)
the polar discriminator vectors deviate from the origin.
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Figure 4.3  Vector Diagram of the Polar Discriminator Results

In summary, utilizing a polar discriminator on successive complex-valued baseband

FM samples gives the instantaneous frequency of the sampled FM signal.  The resulting

phase angle from the polar discriminator result contains the information in the original

message m(t).

4.2.2  Digital Limiter and Phase Angle Approximation

The difficult step of recovering the message information from a sampled FM signal

is determining the phase angle from the polar discriminator result.  The polar discriminator

returns a complex number z = x + j y.  The corresponding phase angle of that complex

number is the instantaneous frequency of the sampled FM signal.  From Equation (2.26),

this result is exactly the message m(t).  Equation (4.3) shows the exact method of

determining the phase angle θ of a complex number.  The true phase angle calculation

involves the arctangent function.  Consequently, the arctangent is not an intrinsic function

in any DSP or microprocessor instruction set.  Furthermore, computing a true arctangent

is complex and too time consuming for most DSP applications.  Thus, an estimate of the
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arctangent which gives an accurate measure of θ is necessary.  There are many methods

for approximating the phase angle of a complex number, and one such method which is

geared for speed is developed in this chapter.

Consider again the complex coordinate system in Figure 4.1.  Using Equation

(4.3), the phase angles in quadrants I and II are all positive (0 to π radians).  The phase

angles in quadrants III and IV can be considered as negative angles (-π to -2π radians).  In

fact, the angles in quadrants III and IV are the exact negatives of the angles in quadrants II

and I, respectively.  Therefore, an approximation of the phase angle θ only needs to be

derived for quadrants I and II.  This approximation can be translated to quadrants III and

IV by a simple negation.

Development of a digital limiter

In FM the amplitude of the signal is assumed to be constant.  However, amplitude

modulation (AM) noise and other contributing factors can vary the amplitude of the

resultant vector from the polar discriminator.  A varying amplitude will cause errors in the

phase approximator.  The phase approximation must be invariant to the amplitude of the

polar discriminator vector.  Recall from Chapter 2 that analog FM demodulators, like the

slope detector in Figure 2.1, solve this problem by using a hard limiter to clip the signal

amplitude to a known value.

In the digital mathematical model, it was discovered that a ratio of the real

component and imaginary component always gives a result that is phase dependent and

amplitude independent.  These ratios correspond to a range of numbers that are native to

each quadrant.  Consider quadrant I shown in Figure 4.1.  The real and imaginary

components of a complex number are positive in quadrant I.  A ratio that is amplitude

independent is
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ratioquadrantI  =  
Re(z) -  Im(z)
Re(z) +  Im(z)

(4.9)

Equation (4.9) relates the real and imaginary components to their position in

quadrant I, but the result does not depend on their amplitude.  This result still preserves

the phase, but the division operation makes it amplitude invariant.  The ratio in Equation

(4.9) returns real numbers in the range [-1,1].  The equation below shows the critical

points returned by the quadrant I ratio.

ratioI =
≠

≠

R
S
|

T|

1
0

0

,
,
     Re(z)  0,  Im(z) =  0 
     Re(z) =  Im(z)

-1,     Re(z) =  0,  Im(z)  
(4.10)

Equation (4.10) reveals that the ratio in Equation (4.9) returns fractional results.

Thus any vector, invariant of its magnitude, residing in quadrant I will return a unique

number that is relative to its phase in quadrant I.  This unique number will be a fractional

number in the range [-1,1].  The fractional result is another design characteristic of the

ratio.  The demodulator software will run in a fixed-point (fractional) mode on the DSP.

Thus, the ratio already addresses the problem of obtaining fractional numbers for the

calculations on the DSP.  Using the same methodology, the ratio for complex numbers

residing in quadrant II is

ratioquadrantII  =  
Re(z) +  Im(z)
Im(z) -  Re(z)

(4.11)

Equation (4.11) also returns fractional numbers within the range [-1,1].  Recall

from Figure 4.1, imaginary components are positive and real components are negative in

quadrant II.  Similar to Equation (4.10), the ratio for quadrant II returns the following

critical points.
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ratioII =
≠

≠

R

S
|

T|

1
0

0

,
,
     Re(z) =  0,  Im(z)  0 
     Re(z) =  Im(z)

-1,     Re(z)  0,  Im(z) =  
(4.12)

Finally, Equations (4.9) and (4.11) can be computed for all values of a complex

number z in each respective quadrant.  As shown, these ratios not only give a means to

estimate the phase, but they also perform the same task as a hard limiter.  Therefore, the

digital FM demodulator is not subject to AM noise.

Development of a phase angle estimate function

In order to estimate the actual phase angle returned by the ratios in Equations (4.9)

and (4.11), a relationship between these calculated ratios and the true phase angle θ is

needed.  Recall, Equations (4.9) and (4.11) return fractional numbers in the range [-1,1].

These resulting numbers have to be converted to the actual phase angles of each complex

number.  Since the processing time for the DSP is finite, an approximation of the actual

phase angle is sufficient.  There exists many methods for approximating functions.  Several

popular methods include:  Table look up, Taylor-series approximation, and polynomial

fitting.

  Polynomial fitting, or Lagrange interpolation, was chosen as the phase function

approximation technique.  This technique allows any continuous function to be "fitted"

with a polynomial derived from actual data points.2   The method can be used to create

low-order polynomials that only need a few multiplies and additions to produce a

sufficiently accurate function estimate.  The ratios from Equation (4.9) and (4.11) act as

the inputs to the Lagrange interpolating polynomial.  The resultant polynomial is the phase

angle estimate function.  In this mathematical model, one interpolating polynomial is

                                               
2 From William Hager, "Numerical Analysis Lecture Notes", University of Florida, 1992.
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needed for the quadrant I ratio and another is needed for the quadrant II ratio.  The

construction of the quadrant I interpolating polynomial is shown in Figure 4.4.  The

difference table approach demonstrated in Figure 4.4 is indicative of Newton's method, but

the resulting polynomial is equivalent to a Lagrange interpolation polynomial.3 

ratio true phase angle (rad)

0

-1

1 0  - 0

0 - 1
= - 

-1 - 0
= -

0

( x variable) ( y variable )

y = 0 + -       (x -1) + 0 (x - 1)(x - 0)

y = -        x  + 

Substituting for variable names,

phase   = -        ratio  +  

4

2

4
4

2 4
-

4

4

I

4 4

I 4 4I

Figure 4.4  Construction of the Quadrant I Interpolating Polynomial

For each interpolating polynomial, the three critical ratio points shown in

Equations (4.10) and (4.12) were chosen to construct a second-order (quadratic)

polynomial.  For the case of quadrant I, the corresponding phase angle points that

matched the critical ratio values were (in radians):  θ = 0, π/4, and π/2 (the two endpoints

and the midpoint in the quadrant).  For quadrant II,  the corresponding phase angle points

were:  θ = π/2, 3π/4, and π.  Finally, the interpolating phase estimate polynomials were

                                               
3 From William Hager, "Numerical Analysis Lecture Notes", University of Florida, 1992.



35

constructed following the method in Figure 4.4.  The resulting phase estimate functions

are

θ π π
quadrantI Iratio  =      − ⋅ +

4 4
(4.13)

θ π π
quadrantII IIratio     +  = − ⋅

4
3
4

(4.14)

Equations (4.13) and (4.14) show that the second-order polynomials simplified to

first-order (linear) equations.  These interpolating polynomials produce sufficient phase

angle results.  However, the first-order approximation induces large errors away from the

data points used to produce the polynomial.  Intuitively, this error originates because the

phase estimate function is linear, but the true phase function of a complex number is

nonlinear.  Consequently, increasing the number of data points in the polynomial

construction increases the polynomial order, but the increase in order modifies the

function "fit".  A larger-order polynomial may reduce the error, but the increase in

computational complexity becomes an issue.

Figure 4.5 shows a graph of the true phase angles versus Equations (4.13) and

(4.14) for θ = 0 to π.  The dashed line in Figure 4.5 indicates the true phase angle points,

and the solid curve is a plot of the phase angle estimate functions for quadrants I and II.

From Figure 4.5, it is evident that the phase angle estimate functions have zero error only

at the true phase angle points that were used to construct the interpolating phase

functions.  This property is an artifact of Lagrange polynomial interpolation.  Also, the

error in the phase estimate increases at phase angles that are far away from the data points

used to construct the interpolating polynomials.  Figure 4.5 verifies that the phase estimate

error is zero at θ = 0, π/4, π/2, 3π/4, and π.  These data points were the exact phase angle

points used to construct the polynomials as demonstrated in Figure 4.4.
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Figure 4.5  Graph of the True Phase Angles Versus the Phase Angle Estimates

Figure 4.5 explicitly shows the larger regions of phase angle error as the phase

estimates deviate from the true phase angle values.  However, for a linear phase estimation

function, the "fit" is extremely good.

The goal in this chapter was to develop a very fast phase approximator that

sufficiently estimates the phase angle for a sampled FM signal.  Moreover, the phase

estimator has to accommodate for maximum phase angle differences of 180° (the Nyquist

sampling rate) between consecutive incoming samples.  Hence, the linear approximation

function of the phase angle θ proves to be computationally fast as well as sufficiently

accurate.

4.3  Demodulator Algorithm Block Diagram
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A final block diagram of the designed digital FM demodulator is shown below.

Polar 
Discriminator

Digital
Limiter

Phase Angle 
Estimate

Complex-sampled
baseband FM data

    Demodulated
discrete-time output

m(n) z(n)

Figure 4.6  Block Diagram of the Digital FM Demodulator Algorithm

  By inspection, the functional blocks in Figure 4.6 perform the same operations as

the blocks in Figure 2.1, but not in the same order.  From Figure 4.6, the digital FM

demodulator calculates the instantaneous frequency first and then performs a limiting

operation.  The analog slope-detection method shown in Figure 2.1 reverses these two

tasks.

Relevant issues involving the sampling rate and speed of the digital FM

demodulator, the system error due to the phase angle estimates, and other implementation

factors are considered in the next chapter.



38

CHAPTER 5
REALIZATION AND TESTING OF THE DIGITAL FM DEMODULATOR

This chapter discusses the realization of the digital FM demodulator and addresses

the implementation issues arising from the demodulator algorithm and the digital radio

architecture.  Also, the simulation, realization, testing, and performance of the digital FM

demodulator is presented and analyzed.

5.1  Implementation Issues

5.1.1  FM Signal Bandwidth

The FM input signal received by the digital radio must be processed in real time for

successful demodulation to occur.  Therefore, the digital demodulator software must be

finished processing the current sample before the next sample is captured.  Adhering to

Nyquist's Theorem, the FM signal must be sampled at least twice the total bandwidth of

the baseband FM signal [Opp89].  The FM baseband bandwidth can be found by using

Carson's rule [Cou90].

B
F

B
B F BFM    = + = +2 1 2( ) ( )

∆ ∆ (5.1)

In Equation (5.1), B is the bandwidth of the message m(t) and ∆F is the frequency

deviation as defined in Equation (2.7).  For a sinusoidal message, the bandwidth B is just

the frequency of the sinusoid fm. 

The corresponding Nyquist sampling rate for the FM signal bandwidth is
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f B F Bs FM   =  4   = +2 ( )∆ (5.2)

A bottleneck occurs when the sampling rate exceeds the time it takes the DSP

software to process a sample.  If the FM signal is significantly oversampled, the

demodulator must still operate in a real-time processing window.  Wideband FM signals

generally cannot be targeted with the demodulator because of their large bandwidth and

the finite processing speed of the DSP.  This bottleneck is an artifact of the DSP

instruction rate and the speed of the digital radio hardware.  However, narrowband FM

signals are attractive since they offer less computational burden.  A narrow FM bandwidth

is indicative of a small frequency deviation.  In this case, the narrowband FM signal can be

significantly oversampled without running the risk of falling out of the real-time

computational window.  Therefore, the digital FM demodulator was only tested on

narrowband FM signals.

5.1.2  Complex Sampling

Any real-valued input sequence has a frequency spectrum that exhibits Hermitian

symmetry about the origin.  The negative frequency spectrum is simply the Hermitian

mirror image of the positive frequency spectrum, denoted by H(w) = H*(-w) [Mit93].  In

the design of Hilbert transformers, the negative frequency spectrum is discarded since it is

not needed.  An ideal Hilbert transformer corresponds to an all-pass filter with a π/2 phase

shift for all frequencies [Mit93].  Passing a real-valued signal x(t) through a Hilbert

transformer creates a real and imaginary component denoted by

y t x t h t x t j x t
t

( ) ( ) ( ) ( ) ( )            = ∗ = + ∗L
NM

O
QP

1
π

(5.3)



40

The frequency response of the ideal Hilbert transformer resembles the following equation.

H w( )
,
,

  
    w > 0
    w < 0

   = R
S
T

2
0

(5.4)

The gain factor of two in Equation (5.4) is purely for mathematical convenience.

Thus, by observing the spectrum created from Equation (5.4), the property of causality

has been imposed in the frequency domain.  By the Fourier transform property of duality,

this suggests a complex-valued time domain signal.  For this reason, complex-valued time

signals whose Fourier transforms vanish for negative frequencies are often termed

"analytic" signals [Mit93].

The sampling theorem proves that the Fourier transform of a sampled real-valued

input signal x(t) results in periodic replicas of X(w).  These replicas of X(w) are spaced

apart by integer multiples of the sampling frequency to produce the periodic Fourier

transform [Opp89].

For the case of  a complex-valued time sequence, it was proven above that the

frequency spectrum is halved because of the discarded negative frequency portion.  Thus,

the periodic frequency replicas created from complex sampling contain no information in

the respective negative frequency regions.  Figure 5.1 demonstrates frequency spectrum

replication of X(w) due to complex sampling.
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Figure 5.1  Spectrum of a Complex Signal Sampled at the Nyquist Rate

Figure 5.1 shows the frequency spectrum X(w) of a band-limited "analytic" signal

x(t).  The second spectrum Xs(w) corresponds to the Fourier transform of the sampled

complex-valued time sequence, termed an "analytic" sequence.

The sampling theorem also states that the Nyquist sampling rate must be obeyed if

no aliasing occurs in the frequency domain.  For real-valued signals, the Nyquist frequency

occurs at w = π/Ts.  This corresponds to a Nyquist rate of fs = 2fmax.  However, for an

"analytic" sequence it is readily apparent from Figure 5.1 that the Nyquist rate can be

reduced by a factor of two.  This reduction stems from the fact that the spectrum contains

only positive frequency information.  This "half-band" spectrum allows the Nyquist

frequency to be relaxed to a value of w = 2π/Ts.  The corresponding Nyquist sampling

rate is reduced to fs = fmax without aliasing in the frequency domain.  Hence, the net

effect of complex sampling a real-valued input signal results is an overall relaxation of the

Nyquist sampling rate by two.
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Using the above arguments, the digital FM demodulator can use a sampling rate

equal to BFM /2 given in Equation (5.1).  Aliasing will not occur if the FM signal is

complex sampled at a rate of BFM/2 samples/sec.  Thus, the new FM bandwidth equation

becomes

B
B

F BFM
FM

complex
    2   = = +

2
( )∆ (5.5)

and the relaxed Nyquist sampling rate becomes

f B F Bs FMrelaxed complex
    2(= = +∆ ) (5.6)

The reduction in the sampling rate due to complex sampling shown in Equation

(5.6) increases the FM signal bandwidth the demodulator can process while maintaining a

real-time processing window.

5.2  Computer Simulations of the FM Demodulator Algorithm

The digital FM demodulator was first tested using computer simulation.  These

simulations provided a mapping from the algorithm theory into a working model.  The

simulations also promoted a figure of merit for the FM demodulator algorithm.  Assuming

no quantization error or finite math errors, the computer simulations provided a sterile

environment in order to classify the performance of the algorithm by itself.  Moreover, the

final FM demodulator simulation acted as a template to translate the demodulator model

directly into DSP assembly code.  Mathcad 4.0 was utilized to simulate the demodulator

algorithm.  The simulations were first broken up into two sessions:  1)  The polar

discriminator simulation and 2)  The phase angle estimate function simulation.  Once these
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two simulations were verified to work as designed, they were assembled as part of the

final digital FM demodulator simulation.  Each simulation session can be found in the

Appendix.

5.2.1  Polar Discriminator Simulation

The polar discriminator was simulated with a synthetic complex-valued input

signal.  The input signal contained no modulation so the polar discriminator vectors had a

constant phase angle and could be correctly distinguished.  A polar plot demonstrated that

the polar discriminator indeed operated properly and returned the correct phase difference

between two complex samples.  The relevant graphs can be found in Appendix A.

However, as noted in Chapter 4, for a sinusoidal or nonlinear message m(t), the

polar discriminator does not return the exact phase derivative, but an approximation.  The

differentiation error in the polar discriminator result is difficult to quantify, but will be

addressed in the testing phase of the demodulator since the message m(t) is generally a

sum of sinusoids or nonlinear function.

5.2.2  Phase Angle Estimate Simulation

The next simulation tested the phase angle estimate functions for all four

quadrants.  A synthetic complex-valued signal was generated for 5000 phase angle points

spanning across quadrants I and II.  The two interpolating phase angle estimate functions

were calculated for the angles native to their quadrant.  The resulting phase angle

estimates were plotted against the true phase angles.  The relative error accrued from the

phase angle estimates was treated as a random variable.  Since the location of a given

phase angle is random in a modulated signal, the error of the estimated phase is also

random.  In this case, the expected value of the relative error gives a measure of the

average error in an ensemble of complex data points.  The average relative error for the
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phase due to the phase estimator alone was shown to be 7.2%.  This mean error figure is

relatively low and sufficiently accurate for the demodulator algorithm.  During the

demodulator testing phase, this mean error figure can be expected to increase due to finite

word lengths, the sampling rate, and the statistics of the input signal.  Recall that the phase

angle estimate functions have zero error only at the true phase angle points that were used

to construct the interpolating phase functions.  If a high sampling rate or the statistics of

the input signal constrains the polar discriminator vectors to rotate within a small area of a

given quadrant, then the relative phase error can be large if the resulting phase estimate is

far away from the true data points used to create the interpolating phase function.

Moreover, the true phase angle points used in the construction of the interpolating

polynomials were equally distributed across their native quadrants.  The data points were

distributed this way since the phase estimate function has to correctly classify all phase

angles as equally as possible.  Because every phase angle is equally probable, the

interpolating function must account for an equally distributed error across each quadrant.

The equally distributed data points used in the Lagrange interpolation method accounts for

some minimization of this error.  The polar plot in Figure 5.2 is a replica of the phase error

plot in Appendix B.  Figure 5.2 accentuates the areas in each quadrant where the phase

estimate error is large.

The probability of consecutive vectors residing in a large error region of the phase

estimate function unilaterally depends on the statistics of the FM input signal and is

therefore analytically unsolvable.  However, as long as the Nyquist rate is maintained, the

relative phase error will be approximately 7.2% on average.  Also, sampling the input

signal greater than the Nyquist rate increases the probability that a given vector will lie in a

large error region of the phase estimate function.  This is an artifact of the Lagrange

polynomial construction.  If the sampling rate constrains the vectors to migrate about an

area that induces a large error in the phase estimate, the overall phase estimate error will

increase.
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Figure 5.2  Polar Plot of the Phase Angle Estimates Versus True Phase Angles

5.2.3  FM Demodulator Algorithm Simulation

The FM demodulator algorithm simulation was analyzed at the Nyquist sampling

rate -- the maximum sampling rate for which the demodulator can operate.  The

modulated input message m(t) injected into the FM demodulator was chosen as a 1 kHz

sinusoid.  The sinusoidal message permits an easy first-order analysis of the demodulator

performance.  The complex mixing operation and complex sampling operation was

simulated by creating a complex baseband FM signal through the use of Equation (2.21).

The P(t) signal was generated in the simulation for simplicity.  Also, an oscillatory AM

noise signal was generated and added to the baseband FM signal to demonstrate the
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function of the digital limiter.  Upon demodulation, the message m(t) appeared as the

derivative of P(t), as given by Equation (2.4).  The resulting amplitude of the message

m(t) was calculated and verified in the simulation.

Polar discriminator and digital limiter

The FM demodulator simulation established that the polar discriminator calculated

the phase difference between successive complex FM samples.  These phase vectors

deviate up to 180°, verifying the Nyquist sampling rate.  Also, the digital limiter effectively

eliminated the AM noise present in the phase vectors and passed the results to the phase

estimate functions.  The relevant graphs are shown in Appendix C.

Phase estimate errors

  The resulting mean phase estimate error was approximately 4%.  This error figure

is lower than the calculated phase error shown in the phase angle estimate simulation.

However, the statistics of the input FM signal can cause the phase vectors to reside

around a low error region in the interpolating phase polynomial, thus explaining the low

phase error.

Spectral analysis

Discrete phase errors are difficult to measure while the FM demodulator is being

tested.  Hence, a spectral purity test was simulated to measure a theoretical versus

practical signal-to-noise ratio (SNR) for the demodulated message.  The spectral

simulation demonstrated that at the Nyquist rate, the algorithm suffered a minimum 5 dB
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loss in the SNR ratio due to the demodulator algorithm.  Figure 5.3 is a replica of the

spectral simulation plot found in Appendix C.  From Figure 5.3, it is evident that

harmonics of the message frequency were responsible for the SNR loss.  In fact, only the

odd harmonics were accountable for the noise.  These corrupting harmonics give the FM

demodulator algorithm a minimum SNR error expected after implementation.  The

harmonic distortion due to the demodulator algorithm can be attributed to the

differentiation error from the polar discriminator and the phase estimate error.  Because of

the complexity of analyzing the system error, the simulation is unable to delineate which

error contributes the most to the harmonic distortion.
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Figure 5.3  Spectral Analysis Plot of the Demodulated Message

The final FM simulation gave sufficient results and demonstrated that the

mathematical model of the FM demodulator worked as designed.  The system error in the

demodulated message demonstrates the classic tradeoff of algorithm speed versus

accuracy.  Since this FM demodulator algorithm was geared for speed, some error must be
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tolerated.  The next step was to translate the final FM demodulator simulation into DSP

assembly code in order to run on the digital radio board.

5.3  Realization of the FM Demodulator into DSP Code

From the FM demodulator block diagram in Figure 4.5, the number of necessary

mathematical operations to process one complex FM sample can be readily determined.

The polar discriminator block requires one complex multiply, which translates to four real

multiplies and two additions.  Likewise, the digital limiter needs two additions and one

division.  Finally, the phase estimator block requires one real multiply and one addition.

So, demodulating a complex-sampled FM signal requires the following operations per

sample:  Five real multiplies, five real additions, and one division.

5.3.1  DSP Computational Overhead

The FM demodulator was directly implemented into ADSP-2101 assembly code

using the final Mathcad simulation as a template.  The software listing is included in the

Appendix.  The polar discriminator was implemented in 19 DSP assembly instructions

(62.5 ns per instruction cycle).  The digital limiter was implemented in 25 DSP

instructions.  The phase angle estimator was implemented with 10 instructions for the

quadrant I estimate and 14 instructions for the quadrant II estimate.  Thus, the

computational overhead was approximately 54-58 DSP instructions per complex sample

for the FM demodulator.  This overhead does not include the time to fetch a new complex

sample from the GC1011.  Chapter 3 stated that the GC1011 chip was "polled" for new

samples.  The GC1011 software overhead is about 30 DSP instructions, which

corresponds to (30)*62.5 ns = 1.875 µs of extra overhead for processing each sample.

Also, the DAC interrupt service routine requires 10 DSP instructions, or 625 ns.  Hence,
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the worst-case time it takes the DSP to process one complex sample is  (58)*62.5 ns +

625 ns + 1.875 µs = 6.125 µs.  This calculated time defines the maximum sampling rate

for the demodulator and also the real-time operating window.  The demodulator will fall

out of real-time operation if the incoming samples arrive faster than f = 1 / 6.125 µs =

163.3 kHz.  Moreover, from Equation (5.6) this sampling rate also defines the total FM

signal bandwidth able to be processed by the digital FM demodulator.

5.3.2  Quantization Errors and Best-Case SNR

As mentioned in Chapter 3, the front-end A/D converter has a resolution of 8 bits.

This corresponds to a theoretical 8(6 dB) = 48 dB of SNR using the 6-dB rule.

Moreover, the GC1011 rounds the complex samples sent to the DSP to 16 bits, and the

back-end DAC has a resolution of 12 bits.  Therefore, quantization error, finite-word

lengths, and rounding have an effect on the algorithm system error.

The phase estimate function coefficients were realized with 12-bit precision.  This

precision was chosen because it prevented overflow and the need for saturation arithmetic.

Hence, there is an inherent error by quantizing the phase function coefficients to 12 bits.

However, it was calculated that the relative error in the coefficients was at most 0.03%,

which can be neglected as a source of significant error.

Equation (2.21) shows that after the mixing operation, a baseband FM signal has

half of its original amplitude.  Unfortunately, the GC1011 does not account for this "half-

power" loss.  Because of this fact, the GC1011 is responsible for an additional 6 dB of

SNR loss before the DSP processes the data.1  Therefore, the GC1011 effectively drops

one bit of available SNR resolution, resulting in 7 bits of actual SNR resolution.

Therefore, due to finite-word lengths, the best-case theoretical SNR the digital radio

board can offer is 7(6 dB) = 42 dB.

                                               
1Excerpt from a conversation with Joe Gray of Graychip, Inc.
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5.4  Testing the FM Demodulator

The developed DSP code was compiled and downloaded into a boot EPROM.  On

system powerup, the DSP on the digital radio board uploads the boot EPROM contents,

initializes the hardware, and begins execution of the demodulator software.

5.4.1  Digital Radio Software and Testing Setup

The DSP initialized the GC1011 digital receiver chip to decimate the incoming RF

digital data to 50 Ksamples/sec., which corresponds to a sampling rate of 50 kHz for the

DSP.  This sampling rate is well within the real-time computational window of the

demodulator code.  The DSP also set the GC1011 tune frequency to a carrier frequency of

21.4 MHz -- a common IF output of an analog receiver.  An RF signal generator was used

to create a 1 kHz sine wave message signal m(t).  This message mocks the synthetic signal

used in the demodulator simulation.  The resulting FM signal from the signal generator

had a carrier frequency of 21.4 MHz, and it was used as the input to the digital radio

board.  The optimal amplitude for the FM input signal was determined to be -1.0 dBm

through heuristic methods.  By Equation (5.7), the 1 kHz sine wave message and the 50

kHz sampling rate indicates a maximum FM frequency deviation of  ∆F = 24 kHz.  Thus,

surpassing a frequency deviation of ∆F = 24 kHz while testing will result in aliasing.  The

AM noise was unable to be fabricated in the laboratory, but the simulation proved that the

algorithm works correctly with or without the presence of AM noise.

5.4.2  SNR Measurements

As discussed in the spectral analysis simulation section, a spectrum analyzer was

used to measure the SNR due to harmonic distortion for the digital FM demodulator.  The

frequency deviation of the FM signal was stepped from ∆F = 1 kHz to ∆F = 24 kHz in 1

kHz increments via the RF generator.
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The original 1 kHz message signal was successfully demodulated by the digital

radio, and the digital FM demodulator output from the onboard DAC was observed on the

spectrum analyzer for purity.  Depending on the frequency deviation, the worst-case SNR

due to harmonic distortion was 24 dB.  The best-case SNR was observed to be 36 dB.

Since the spectrum analyzer output had no printing capability, the uncertainty in the SNR

measurements were ±1 dB.  Table 5.1 shows the SNR figures for each increment of the

frequency deviation.  The table also lists the message signal strength and the largest

corrupting harmonic for each SNR measurement taken.

Table 5.1  Frequency Deviations and FM Demodulator SNR Measurements

Frequency deviation 
∆F (kHz)

1 kHz message
amplitude (dB)

SNR (dB) Largest corrupting
harmonic

1 -8 32 3rd
2 -2 29 3rd
3 0 26 3rd
4 2 24 3rd
5 4 24 3rd
6 6 24 3rd
7 7 26 3rd
8 8 26 3rd
9 9 27 3rd
10 10 29 3rd
11 10 30 3rd
12 11 31 5th
13 12 30 5th
14 12 30 5th
15 14 34 3rd, 5th, 7th
16 15 33 7th
17 16 34 7th
18 17 36 7th
19 17 34 7th
20 17 33 5th
21 17 32 5th
22 17 31 3rd
23 17 30 3rd
24 17 aliased aliased
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The test data in Table 5.1 agrees with the findings in the computer simulations.

Specifically, the following observations directly correlates the test data to the simulation

results.

• The major corrupting harmonics in the demodulated message were the odd
harmonics.

• The range of SNR numbers in Table 5.1 is 24 dB to 36 dB.  Recall, the
frequency deviation of the FM signal directly effects the SNR of the
demodulated message.  It was shown before that the best-case SNR for the
digital radio was 42 dB.  Moreover, the demodulator simulation verified that
there is at least a 5 dB SNR loss due to the algorithm itself.  Consequently, this
imposes a best-case theoretical SNR for the FM demodulator of 37 dB.  The
test data verifies that the demodulator never reaches the 37 dB theoretical SNR
figure but comes close.  The small difference from the theoretical SNR to the
measured SNR can be attributed to losses inherent to the digital radio board,
such as finite arithmetic and rounding errors.

• The test data also justifies the fact that the system error increases (i.e., the
SNR figures decrease) by varying the FM frequency deviation.  It was revealed
previously that decreasing the frequency deviation below the Nyquist rate
causes the statistics of the FM signal to change and thus allowing the phase
vectors to reside in a high error region of the phase estimate functions.

• With a 50 kHz sampling rate, the demodulator experienced aliasing at ∆F = 24
kHz.  This value is consistent with the expected Nyquist rate.

The demodulator produced satisfying results using the first-order phase estimate

functions.  The test data concurs with the initial findings in the computer simulations.

Specifically, the error in the demodulated message fluctuated significantly in some cases,

but the demodulator algorithm knowingly traded accuracy for speed.

Therefore, the realization of the digital FM demodulator proved successful, and

the corresponding test results demonstrated that the algorithm theory was correctly

implemented and the demodulator operated up to the design expectations.
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CHAPTER 6
CONCLUSION AND FUTURE DEVELOPMENT

This thesis presented the design of a digital FM demodulator as implemented on a

digital radio.  The concepts of digital signal processing allowed a common analog FM

demodulator to be mathematically modeled and transformed into an equivalent digital

version.  The algorithm was first prototyped using computer simulations.  These

simulations verified that the algorithm integrity was preserved from theory to realization.

The digital FM demodulator was then implemented with DSP software and executed in

real time on the digital radio board.  The FM demodulator was able to effectively

demodulate narrowband FM signals.  Wideband FM signals were not targeted due to the

speed limitations of the digital radio board.  However, the digital FM demodulator proved

to be a stepping stone to other common narrowband demodulator schemes implementable

on the digital radio.

Examples of several "next-step" demodulators that can be readily implemented

using the digital radio and DSP techniques are listed below.

• An AM demodulator can be realized on the digital radio by simply passing the
incoming complex baseband samples through a function that estimates
Equation (4.2).

• A frequency-shift keying (FSK) algorithm consists of the functional blocks in
Figure 4.6 without the phase angle estimate block.  Since FSK only uses two
modulating frequencies, the true phase angle is unnecessary.

• Multilevel signaling techniques, like quadrature-amplitude modulation (QAM)
can be realized by adding the AM demodulator listed above to the block
diagram shown in Figure 4.6.
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The FM demodulator designed in this paper can be modified to improve its overall

performance.  Development of a more accurate phase angle estimator is the obvious

solution for improving the algorithm performance.  Methods such as a Taylor series

expansion for the arctangent function in Equation (4.3) or a look-up table will improve the

accuracy of the phase angle estimator.  However, such modifications will trade program

execution speed for the improved accuracy.  Consequently, this loss in speed implies a

reduction in the FM signal bandwidth the digital radio can process.

The maturation of the digital radio hardware also plays a role in the software

development.  A faster DSP and a faster data transfer rate between the digital receiver

chip and the DSP will allow a larger RF bandwidth to be processed.  Hence, wideband FM

modulation and other high-bandwidth communications can be targeted with a higher speed

digital radio board.  The digital radio will replace the conventional analog receiver when

the evolution of the digital radio reaches a point where high bandwidth, multiple-channel

communication schemes can be targeted and demodulated through the use of DSP code.
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APPENDIX A
SIMULATION OF THE POLAR DISCRIMINATOR

The following is the Mathcad 4.0 simulation session for the polar discriminator

utilized in the digital FM demodulator.  The session was executed on a PC Windows-

based software platform.
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APPENDIX B
SIMULATION OF THE PHASE ANGLE ESTIMATE FUNCTIONS

The following is the Mathcad 4.0 simulation session for the phase angle estimate

functions utilized in the digital FM demodulator.  The session was executed on a PC

Windows-based software platform.
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APPENDIX C
SIMULATION OF THE DIGITAL FM DEMODULATOR

The following is the Mathcad 4.0 simulation session for the final design of the

digital FM demodulator.  All previous Mathcad simulations were assembled to create the

framework for this final simulation environment.  The session was executed on a PC

Windows-based software platform.
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APPENDIX D
DIGITAL FM DEMODULATOR SOFTWARE LISTING

ADSP-2101 DSP Assembly Code Listing (.DSP)

{ FM_DMOD4.DSP

 This program FM demodulates 1 GC1011 channel (GC1011_A) using a polar
 discriminator to extract the FM modulated signal.  Tune frequency is
 set to 21.4 MHz.

 MODIFICATION HISTORY
 28-Apr-93  JMS: Program architecture came from SYSTEST6.DSP
 03-May-93  JMS: Added arctan estimator to the polar discriminator so we could 

sample at Nyquist.
 06-May-93  JMS: Attempt to optimize arctan phase estimator

}

.MODULE/RAM/ABS=0/SEG=IntProgMem fm_dmod4;

.INCLUDE <D:\AD2101\INCLUDE\DEF2101.H>; {Get constants for 2101 mem. map}

.INCLUDE <constants.h>; {Get constants for initializing chips}

.INCLUDE <ports.h>; {Get ports defined for peripherals}

.VAR/PM/RAM/SEG=IntProgMem     GC1000Data[56]; { Setup data for GC1000 }

.VAR/PM/RAM/SEG=IntProgMem     GC1011Data[44]; { Setup data for GC1011 }

.VAR/DM/RAM/CIRC/SEG=IntDataMem  quadII_coeff[2];  {coeff for atan estimator}

.VAR/DM/RAM/CIRC/SEG=IntDataMem OutBuf[8];  { Setup output buffer }

.VAR/DM/RAM/SEG=IntDataMem sample_rate;

.VAR/DM/RAM/SEG=IntDataMem real;

.VAR/DM/RAM/SEG=IntDataMem imag;

.VAR/DM/RAM/SEG=IntDataMem real_old;

.VAR/DM/RAM/SEG=IntDataMem imag_old;
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.VAR/DM/RAM/SEG=IntDataMem quadI_coeff;

.INIT   GC1000Data:       <GC1000_A.dat>;    { Init. PM w/GC1000 setup }

.INIT   GC1011Data:       <GC1011FM.dat>;    { Init. PM w/GC1011 setup }
{ .INIT   quadII_coeff:  H#0324, H#096C; }

{* interrupt jump vector table *}

JUMP MAIN; nop; nop; nop;       { reset interupt }
JUMP OUTDATA; nop; nop; nop;    { interrupt for DACs }
RTI; nop; nop; nop;       { SPORT0 transmit interupt }
RTI; nop; nop; nop;         { SPORT0 receive interupt }
RTI; nop; nop; nop;             { IRQ1 interupt }
RTI; nop; nop; nop;        { IRQ0 interupt }
RTI; nop; nop; nop;             { timer interupt }

{* Executable code: *}

MAIN:   AX0=0;                          { initialize DM variables }
DM(real)=AX0;
DM(imag)=AX0;
DM(real_old)=AX0;
DM(imag_old)=AX0;

AX0=H#0C90;                     { quadI coeff = 0.785 / 8 coeff to }
DM(quadI_coeff)=AX0;     { prevent overflow }

{* NOTE: quadII coeffs are 1st scaled < 1 and then / 8 to prevent overflow *}

I0=^quadII_coeff;
M0=1;

        L0=%quadII_coeff;
        AX0=H#0324;                     { 3.13 format for numbers > 1 }
        DM(I0,M0)=AX0;
        AX0=H#096C;
        DM(I0,M0)=AX0;

AX0=0x00F9;                     { set for 50kHz output rate to DAC }
        DM(sample_rate)=AX0;        { for initial FM bandwidth }

       AX0=0x001F;                     { Setup the system control register }
DM(Sys_Ctrl_Reg)=AX0; { SPORT's disabled, Boot page=0 }

        AX0=0x35FF;                     { Setup the wait states for DM space }
        DM(Dm_Wait_Reg)=AX0;  { DWAIT3=2,DWAIT4=3, all others 7 }
        MSTAT = 0;                      { setup FRACTIONAL results for MAC}
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IFC   = B#000000111111; {Clear out any interupts, }
        ICNTL = B#00111;               { setup IRQ2,IRQ1,IRQ0 as edge trig }
        IMASK=0;                     { disable all irqs}

        L0  = 0;                        { Set all the circular buffer }
        L1  = 0;                        { registers to be linear }
        L2  = 0;                        { addressing }
        L3  = 0;
        L4  = 0;
        L5  = 0;
        L6  = 0;
        L7  = 0;

{* Setup the GC1000 chip. Transfer data from program memory to the chip. *}

        M0=1;                           { Setup I0 to step one by one }
        I0=GC1000;                      { beginning at GC1000's Base Addr.}
        L4=0;
        M4=1;                           { Setup I4 to step one by one }
        I4=^GC1000Data;              { through PM GC1000 Setup data }
        CNTR=%GC1000Data;       { Transfer all data in PM }
        DO SETUP1 UNTIL CE;
          AX0=PM(I4,M4);                { Grab value from PM and }
SETUP1:   DM(I0,M0)=AX0;        { move it to DM }

{* Setup the GC1011's to their default values. See the GC1011.DAT file for
  the default setup information. *}

        I0=GC1011A;                     { Get base addr. of GC1011-A }
        I4=^GC1011Data;                 { Get base addr. of GC1011 setup data }
        CNTR=11;                        { Transfer the 11 bytes of setup }
        DO SETUP2 UNTIL CE;
          AX0=PM(I4,M4);                { data from PM (AX0 temp. holds it) }
SETUP2:   DM(I0,M0)=AX0;         { to GC1011 }

        I0=GC1011B;                     { Get base addr. of GC1011-B }
        CNTR=11;                        { Transfer the 11 bytes of setup }
        DO SETUP3 UNTIL CE;
          AX0=PM(I4,M4);                { data from PM (AX0 temp. holds it) }
SETUP3:   DM(I0,M0)=AX0;             { to GC1011 }

        I0=GC1011C;                     { Get base addr. of GC1011-C }
        CNTR=11;                        { Transfer the 11 bytes of setup }
        DO SETUP4 UNTIL CE;
        AX0=PM(I4,M4);                { data from PM (AX0 temp. holds it) }
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SETUP4:   DM(I0,M0)=AX0;          { to GC1011 }

        I0=GC1011D;                     { Get base addr. of GC1011-D }
        CNTR=11;                        { Transfer the 11 bytes of setup }
        DO SETUP5 UNTIL CE;
          AX0=PM(I4,M4);                { data from PM (AX0 temp. holds it) }
SETUP5:   DM(I0,M0)=AX0;          { to GC1011 }

{* setup the programmable counter to the output clock frequency rate }

        DM(Count_Xtrset)=AX0;     { Set XTR line on 74F525 to stop }
        DM(Count_rst)=AX0;              { clocking the counter then reset it }
        AX0=DM(sample_rate);        { Get the DAC's clocking frequency }
        DM(Counter)=AX0;            { and send it to the 74F525 }
        DM(Count_Xtrclr)=AX0;    { Re-enable clocking by clearing XTR }

        M4  = 1;                 { Address generator I4 will be the }
        I4  = ^OutBuf;                  { GC1011 input side of the circular }
        L4  = %OutBuf;                  { output buffer  }

        I5  = ^OutBuf;                  { I5 will be DAC output side of the }
        L5  = %OutBuf;                  { buffer. }
        M5  = 1;

        M1  = -1;                       { M1 will decr. address values }
        I1  = GC1011A + QOutput1; { Get addr. of MSB of Q output data. }
        L1=0;

        I7 = ^quadII_coeff;               { pointers for poly coeffs}
        M7 = 1;
        L7 = %quadII_coeff;

{* Loop to poll the GC1011s *}
{* Recall:  IRQ2 = interrupt for DACs *}

        IMASK=B#100000;             { turn on IRQ2 }
TEST:   AY0=1;                          { bit 0 mask }
        AX0 = DM(OutstatA);             { Get status of GC1011's output reg }
        AR  = AX0 AND AY0;         { If data is ready then lets get it }
        IF NE JUMP TEST;                { keep waiting }
        CALL GETDATA;               { Go get two data words from GC1011 }
        CALL POLAR_DISCR;       { demodulate FM signal }
        JUMP TEST;
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{ ============== Subroutine POLAR_DISCR =======================
 * This subroutine demodulates the FM signal using a polar discriminator.
 * Registers used:   I4 = pointer for output buffer
                     AX1 = Imaginary result temp storage
                     AY0 = Real result temp storage      }

POLAR_DISCR: AX0=DM(imag_old);      { polar discriminator multiples new }
          AR= -AX0;                  { sample x conjugate(old sample) }
          MX0= AR;                  { get conjugate of old imag part }
          MY0=DM(real);
          MR=MX0 * MY0 (SS);    { 1st Im term in a complex multiply }
          MX0=DM(imag);
          MY0=DM(real_old);
          MR=MR + MX0 * MY0 (SS);   { IMAGINARY term of complex multiply }
          AX1=MR1;                  { temp storage for Im term }

          MX0=DM(real);             { 1st real term }
          MR=MX0 * MY0 (SS);
          MX0=DM(imag);             { 2nd real term}
          MY0=DM(imag_old);
          MR=MR + MX0 * MY0 (SS);   { REAL term of complex multiply}
          AY0=MR1;                  { temp storage for Re term }

          AR=PASS MR1;             { see if in quadrant I or IV }
          IF GE JUMP QUADI_EST;

{* Phase approximation for quadrant II takes the form of Lagrange *}
{* interpolating poly  y = -.785398 * x + 2.356194  *}

QUADII_EST: AR=ABS AX1;           { if Im component is '-', move to quad II }
          AR=AR+AY0;              { numerator of ratio = Im + Re }
          AY1=AR;                 { prep for division, dividend in AY1, AY0 }
          AR=ABS AX1;
          AR=AR-AY0;              { denominator of ratio = Im - Re }
          AX0=AR;                 { prep for division, divisor in AX0 }
          AY0=0;                  { lower half of numerator is 0 }
          CALL DIVISION;
          MX0=AY0;                { get result of division for poly approx. }
          MY0=DM(I7,M7);          { multiply it by 1st coeff }
          MR=MX0 * MY0 (SS), AY0=DM(I7,M7);
          AR=-MR1;
          AR=AR + AY0;            { add to result }
          SR=ASHIFT AR BY 2 (LO); { shift 3.13 back into 1.15 format }
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          AR=SR0;
          AF=PASS AX1;            { check Im result to see if quad II or III }
          IF LT AR=-SR0;          { if Im is in quad 3, negate phase answer }
          JUMP PHASE_EST;

{* Phase approximation for quadrant I takes the form of Lagrange *}
{* interpolating poly  y = -0.785398 * x + 0.785398  *}

QUADI_EST: AF=ABS AX1;              { if Im part is '-', put in quad I }
           AR=MR1-AF;               { numerator for ratio = Re - Im }
          AY1=AR;                  { prep for division, dividend in AY1 }
           AX0=AY0;                 { move Re component }
           AR=AX0+AF;               { denominator is Re + Im }
           AX0=AR;                  { divisor is in AX0 }
           AY0=0;
           CALL DIVISION;
          MX0=AY0;
           MY0=DM(quadI_coeff);
           MR=MX0 * MY0 (SS), AY0=MY0;
           AR=-MR1;
           AR=AR + AY0;            { add to result }
           AF=PASS AX1;            { check Im result to see if quad I or IV }
           IF LT AR=-AR;           { if in quad 4, negate phase answer }

PHASE_EST: SR=ASHIFT AR BY 1 (LO); { add max gain to prevent DAC overflow }
           DM(I4,M4)=SR0;          { store phase result to out buffer}

{* Store current sample as old sample for next discriminator calculation }

          AX0=DM(real);                { get current real part }
          DM(real_old)=AX0;
          AX0=DM(imag);                { get current imaginary part }
          DM(imag_old)=AX0;

          RTS;

{=====================================================}

DIVISION:  DIVS AY1,AX0;
           DIVQ AX0; DIVQ AX0; DIVQ AX0; DIVQ AX0; DIVQ AX0; DIVQ AX0;
           DIVQ AX0; DIVQ AX0; DIVQ AX0; DIVQ AX0; DIVQ AX0; DIVQ AX0;
           DIVQ AX0; DIVQ AX0; DIVQ AX0;
           RTS;
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{ =============== Subroutine GetData ======================
*  This subroutine will read the imaginary and real data value from the
*  GC1011.  The routine reads the MSB of the Q-value, shifts it and then
*  concatenates the LSB.  The same thing is done with the real value.
*  the results are stored using address in I4.

*  Registers Used.....

        I1 = Address where MSB Q value for the GC1011 is
        M1 = -1, so address is decremented to get Q and I values from GC1011
        I4 = Address where results are stored.
        M4 = Increment I4's address by one.
        AX0, AX1, AY0, AF, AR, SR are used in computation.     }

GETDATA: SI = DM(I1,M1);                { Get the MSByte from GC1011 and }
        SR  = LSHIFT SI BY 8 (LO);      { move this to MSB of 16 bit value }
        AX0 = DM(I1,M1);                { Get the LSByte and clear the MSByte }
        AY0 = 0x00FF;                   { Value to zero out MSB's }
        AF  = AX0 AND AY0;              { to zero.  Append this to GC1011's }
        AR  = SR0 OR AF;                { MSByte to form 16 bit word }
        AX1 = AR;                       { Temp. store Q results in AX1 }

        SI  = DM(I1,M1);                { Get the MSByte from GC1011 and }
        SR  = LSHIFT SI BY 8 (LO);      { move this to MSB of 16 bit value }
        AX0 = DM(I1,M1);                { Get the LSByte and clear the MSByte }
        AF  = AX0 AND AY0;              { to zero.  Append this to GC1011's }
        AR  = SR0 OR AF;                { MSByte to form 16 bit word }

        DM(real) = AR;                 { Store real value first (I reg.) }
        DM(imag) = AX1;                { Store imaginary (Q reg.) }

        I1  = GC1011A + QOutput1;       { Reset addr. of GC1011's Q output. }
        AY0 = 1;                        { Reset the value of AY0 }
        AX0 = DM(OutstatA);             { Get GC1011's status and }
        AR  = AX0 OR AY0;               { set the data ready bit. }
        DM(OutstatA) = AR;              { Send this back to the GC1011 }
        RTS;                            { and go back to work }
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{ =========== OutData interrupt service routine ========================
*  This service routine will take a data value from a buffer and output it to
*  DAC1.

*  Registers Used.....

        I5 = Address where results are stored.
        M5 = Increment I5's address by one.
        SI = Temporary holding register.         }

OUTDATA: ENA SEC_REG;                   { enable secondary registers to}
                                { preserve registers before IRQ}
        SI = DM(I5,M5);                { Get value to send to DAC }
        SR  = LSHIFT SI BY -4 (LO);    { Convert 16 bit value to 12 bit }
        AY1 = H#0800;                  { Convert this 2's complement word }
        AR  = SR0 XOR AY1;             { to offset binary for DAC }
        DM(DAC_1) = AR;

        DIS SEC_REG;
        RTI;

.ENDMOD;                                { Complete the module }
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ADSP-2101 System Builder File (.SYS)

.SYSTEM fm_dmod4;

.ADSP2101;

.MMAP0;

.SEG/PM/RAM/ABS=0x0000/CODE/DATA IntProgMem[2048];

.SEG/PM/RAM/ABS=0x0800/CODE/DATA ExtProgMem[14336];

.SEG/DM/RAM/ABS=0x0000 ExtDataMem[12288];

.SEG/DM/RAM/ABS=0x03800 IntDataMem[1024];

.SEG/ROM/BOOT=0 boot_mem[2048];

{* ports for the memory-mapped peripherals in the DM map *}

.PORT/DM/ABS=0x03280 Counter;

.PORT/DM/ABS=0x03300 DAC_1;

.PORT/DM/ABS=0x03301 DAC_2;

.PORT/DM/ABS=0x03380 DAC_3;

.PORT/DM/ABS=0x03381 DAC_4;

{ specific ports for the DUART }

.PORT/DM/ABS=0x03400 Mode_regA;

.PORT/DM/ABS=0x03401 Status_clk_regA;

.PORT/DM/ABS=0x03402 ISR_Cmd_regA;

.PORT/DM/ABS=0x03403 Data_regA;

.PORT/DM/ABS=0x03404 IPCR_ACR_reg;

.PORT/DM/ABS=0x03405 ISR2_IMR_reg;

.PORT/DM/ABS=0x03408 Mode_regB;

.PORT/DM/ABS=0x03409 Status_clk_regB;

.PORT/DM/ABS=0x0340A Cmd_regB;

.PORT/DM/ABS=0x0340B Data_regB;

.PORT/DM/ABS=0x0340C IVR_reg;

.PORT/DM/ABS=0x0340D In_OPCR_reg;

.PORT/DM/ABS=0x0340E Go_cnt_set_out;

.PORT/DM/ABS=0x0340F Stop_cnt_clr_out;
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{ specific ports for the 4 GC1011 receiver chips }

{GC1011A chip}

.PORT/DM/ABS=0x0308F Qout1A;

.PORT/DM/ABS=0x0308E Qout0A;

.PORT/DM/ABS=0x0308D Iout1A;

.PORT/DM/ABS=0x0308C Iout0A;

.PORT/DM/ABS=0x0308A OutstatA;

{GC1011B chip}

.PORT/DM/ABS=0x0310F Qout1B;

.PORT/DM/ABS=0x0310E Qout0B;

.PORT/DM/ABS=0x0310D Iout1B;

.PORT/DM/ABS=0x0310C Iout0B;

.PORT/DM/ABS=0x0310A OutstatB;

{GC1011C chip}

.PORT/DM/ABS=0x0318F Qout1C;

.PORT/DM/ABS=0x0318E Qout0C;

.PORT/DM/ABS=0x0318D Iout1C;

.PORT/DM/ABS=0x0318C Iout0C;

.PORT/DM/ABS=0x0318A OutstatC;

{GC1011D chip }

.PORT/DM/ABS=0x0320F Qout1D;

.PORT/DM/ABS=0x0320E Qout0D;

.PORT/DM/ABS=0x0320D Iout1D;

.PORT/DM/ABS=0x0320C Iout0D;

.PORT/DM/ABS=0x0320A OutstatD;

{ ports to control the counter }

.PORT/DM/ABS=0x03289 Count_rst;

.PORT/DM/ABS=0x03291 Count_Xtrset;

.PORT/DM/ABS=0x03299 Count_Xtrclr;

.ENDSYS;
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