
IE
EE

Pr
oo

f

[dsp TIPS&TRICKS]
Randy Yates 

and Richard Lyons

DC Blocker Algorithms

1053-5888/08/$25.00©2008IEEE

T
he removal of a dc bias (a
constant-amplitude compo-
nent) from a signal is a com-
mon requirement in signal
processing systems. Thus, a

good dc blocking algorithm is a desirable
tool to have in one’s bag of signal pro-
cessing tricks. In this article we present
both a nonlinear phase fixed-point dc
blocker (using a noise-shaping trick that
eliminates a signal’s dc bias using fixed-
point arithmetic) and a general linear-
phase dc blocker network that may prove
useful in various DSP applications. 

FIXED-POINT DC BLOCKER
Simple fixed-point implementations of a
dc blocker algorithm have a vexing quan-
tization problem that can create more dc
bias than they block. In this section we
present a “leaky integrator” and a noise-
shaping trick called “fraction-saving” to
eliminate the quantization problem
when using fixed-point arithmetic.

The simplest filter that blocks dc is
the digital differentiator, whose transfer
function is given by

R(z) = 1 – z–1. (1)

Having a z-plane zero at z = 1, the differ-

entiator has infinite attenuation at 0 Hz
and perfectly blocks dc. However, the dif-
ferentiator also attenuates spectral com-
ponents close to dc as shown by the
dashed curve in Figure 1.

The standard method of shoring up
that drooping frequency response of a
differentiator is to place a pole just inside
the z-plane zero at z = 1 using a single-
pole filter whose transfer function is

S(z) = 1
1–pz–1 , (2)

where p is a real pole and 0 < p < 1.
Equation (2) describes a leaky integrator,
a nonideal integrator that leaks some
energy away rather than perfectly inte-
grating dc. The integrator’s response to a
dc input will not be an ever-increasing
output, but rather an output that
increases for a time and then levels off.
The term “leaky” is carried over from
analog design in which the capacitor
used to implement an integrator was
imperfect due to the flow of leakage cur-
rent. The cascaded differentiator/integra-
tor transfer function is given by

H(z) = R(z)S(z) = 1 – z–1

1 – pz–1 . (3)

The location of the pole z = p of this
nonlinear-phase filter presents a tradeoff
between the filter’s bandwidth and time-
domain transient response. The magni-
tude responses of H(z) for various values
of p are shown in Figure 1.

Cascaded filters implementing (3)
work fine in a floating-point number sys-
tem and have been described in the liter-
ature [1]–[2]. Next we discuss a potential
problem in fixed-point implementations
of (3).

FIXED-POINT IMPLEMENTATION
To understand the effects of fixed-point
arithmetic on the dc blocker algorithm in
(3), let’s consider the differentiator and
leaky integrator sections independently
using the network in Figure 2(a). Assume
we are using 16-b input and output bina-
ry words as indicated in the figure. 

The differentiator’s difference equa-
tion is 

w[n] = x[n] – x[n– 1]. (4)

Note that, at most, the computation in
(4) will require one more bit than the
input (17 b total) to avoid possible over-
flow, which happens when the input

[FIG1] Cascaded differentiator/integrator frequency response.
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fchanges sign and the magnitude of the
difference is greater than 32,768.
However, barring that case, we can
implement the differentiator without
requiring extra precision in the interme-
diate computation and thus avoid the
associated requantization to 16 b at the
output. Also note that the differentiator
is nonrecursive, so quantization effects,
if they do occur, are not circulated back
through the differentiator.

The leaky integrator has a difference
equation of

y[n] = p · y[n– 1] + w[n]. (5)

Because the goal is to implement (5) on
a fixed-point (integer) processor, its
terms must each be represented as an
integer and the operations must be per-
formed using integer arithmetic. If we
want the x[n] input and y[n] output to
be scaled identically, then we must quan-
tize (truncate) the 32-b product result in
(5) to 16 b. It is precisely this quantiza-
tion that introduces a potentially signifi-

cant dc offset error into the y[n] output,
and the closer the pole is to the unit cir-
cle the larger the potential dc error.

Like any quantizer, the quantiza-
tion’s dc error can be shaped by placing
feedback around the quantizer. In order
to implement our noise-shaping trick,

all that is required is to save the fraction
of the quantizer input and feed it back
in the next update. Hence the term
“fraction-saving.’’ This process is shown
in Figure 2(b). Note that sequence
f [n] = u [n]–s [n] is the fractional part
of u [n] in two’s complement arithmetic
after quantization by truncation. This
can be illustrated as follows: let u be
represented bit-wise as shown in Figure
2(c). Notice that s is u with the 15 least
significant bits truncated. So f = u–s is
the fractional part of u.

Using the fraction-saving scheme in
Figure 2(b) guarantees that the 16-b
y [n] output will have a dc bias of zero
[4]. (Detailed descriptions of noise-shap-
ing can be found in [5] and [6].) In the
next section we describe a computation-
ally efficient linear-phase dc blocking
network.

LINEAR-PHASE DC BLOCKER
Another approach to eliminate the dc
bias of a signal is to compute the moving
average of a signal and subtract that
average value from the signal as shown
in Figure 3(a). The delay element in the
figure is a simple delay line, having a
length equal to the averager’s group
delay, enabling us to time-synchronize
the averager’s v [n] output with the x[n]
input in preparation for the subtraction
operation.

The most computationally efficient
form of a D-point moving averager (MA)

[FIG2] Fixed-point dc blocking filter: (a) simple structure, (b) optimized integrator
structure, and (c) bit-wise representation of u, s, and f.
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[FIG3] Linear-phase dc blocker: (a) moving average subtraction method and (b) dual-MA
implementation.
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is the network whose transfer function is
defined by

H MA(z) = 1
D

· 1–z–D

1–z–1 . (6)

The second ratio in (6) is merely a recur-
sive running sum comprising a D-length
comb filter followed by a digital integra-
tor. If D is an integer power of two, the
1/D scaling in (6) can be performed using
a binary right shift by log2(D) bits.

However, if D is an integer power of
two, then the MA’s group delay is not an
integer number of samples, making the
synchronization of the delayed x[n] and
v[n] difficult. To solve that problem we
use two cascaded D-point MAs as shown
in Figure 3(b). Because the dual-MA has
an integer group delay of D–1 samples,
our trick is to tap off the first averager’s
delay line, eliminating the bottom-path
“Delay” element in Figure 3(a). 

The magnitude response of our dual-
MA dc blocker, for D = 32, is shown in
Figure 4(a). In the figure we show the
details of this dc blocker’s passband with
its peak-peak ripple of 0.42 dB. The fre-
quency axis value of 0.5 corresponds to a
cyclic frequency of half the input signal’s
Fs sample rate. This dc blocker has the
desired infinite attenuation at 0 Hz.

What we’ve created then is a linear-
phase, multiplierless, dc blocking net-
work having a narrow transition region
near 0 Hz. It’s worth noting that stan-
dard tapped delay-line, linear-phase

finite-impulse response (FIR) filter
designs using least-squares error mini-
mization, or the Parks-McClellan
method, require more than 100 taps to
approximate our D = 32 dc blocking fil-
ter’s performance.

On a practical note, the MAs in
Figure 3(b) contain integrators that can
experience data overflow. (An integra-
tor’s gain is infinite at dc!) Using two’s
complement fixed-point arithmetic
avoids integrator overflow errors if we
ensure that the number of integrator
(accumulator) bits are at least

accumulator bits

= number of bits in q [n]

+ �log2(D )�, (7)

where q [n] is the input sequence to
an accumulator and �k� means as fol-
lows: if k is not an integer, round it up to
the next larger integer.

For a narrower transition region
width, in the vicinity of 0 Hz, than that
shown in Figure 4(a), we can set D to a
larger integer power of two. However,
this will not reduce the dc blocker’s
passband ripple.

At the expense of three additional
delay lines, and four new addition oper-
ations per output sample, we can
implement the dc blocker shown in
Figure 4(b). That quad-MA implemen-
tation, having a group delay of 2D–2

samples, yields an improved passband
peak-peak ripple of only 0.02 dB as well
as a reduced-width transition region
relative to the dual-MA implementa-
tion. The dc blocker in Figure 4(b) con-
tains four 1/D scaling operations
which, of course, can be combined and
implemented as a single binary right
shift by 4log2(D) bits.

CONCLUSIONS
We presented a nonlinear-phase, but
computationally efficient, dc blocking fil-
ter that achieves ideal operation when
output data quantization is used. In addi-
tion, we described an alternate dc block-
ing filter that, at the expense of larger
data memory, exhibits a linear-phase fre-
quency response.
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[FIG4] DC blocker: (a) D = 32 dual-MA passband performance and (b) quad-MA
implementation.
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