
s

Technical Reference

Practical Considerations in Fixed-Point FIR Filter Imple-
mentations 1 (15)

Author Date Time Rev No. Reference

Randy Yates 11–Sep–2010 19:26 PA5 n/a fir.tex

Practical Considerations in Fixed-Point FIR Filter Implementations

Randy Yates

11–Sep–2010

s

s i g n a l p r o c e s s i n g s y s t e m s

http://www.digitalsignallabs.com

Typeset using LATEX 2ε

Digital Signal Labs Public Information

http://www.digitalsignallabs.com

s

Technical Reference

Practical Considerations in Fixed-Point FIR Filter Imple-
mentations 2 (15)

Author Date Time Rev No. Reference

Randy Yates 11–Sep–2010 19:26 PA5 n/a fir.tex

Contents

1 Introduction 3

1.1 Motivation . 3

1.2 Conventions . 3

2 Scaling FIR Coefficients 4

3 Choosing the FIR Filter Output Word 12

4 Quantization Noise in FIR Filters 13

4.1 Truncation . 14

4.2 Rounding . 14

4.3 Dithering . 14

4.4 Noise-shaping . 14

5 Conclusions 14

6 Revision History 14

7 References 15

List of Figures

List of Tables

1 Revision History . 14

Digital Signal Labs Public Information

s

Technical Reference

Practical Considerations in Fixed-Point FIR Filter Imple-
mentations 3 (15)

Author Date Time Rev No. Reference

Randy Yates 11–Sep–2010 19:26 PA5 n/a fir.tex

1 Introduction

1.1 Motivation

The most basic type of filter in digital signal processing is the Finite Impulse Response (FIR) filter. By definition, a filter is

classified as FIR if it has a z-transform of the form

H(z) =
b0zN−1 + b1zN−2 + . . . + bN−2z + bN−1

zM−1
, bi ∈ ℜ, N,M ∈ Z, N > 0, z ∈ C, (1)

where ℜ denotes the reals, Z denotes the integers, and C denotes the complex numbers. This is referred to as an N-tap FIR

filter. In general, an FIR filter can be either causal or non-causal. However, FIR filters are always stable, and indeed that is the

chief reason they are widely utilized.

The difference equation that results from H(z) is

y[n] = b0x[n + N − M] + b1x[n + N − M − 1] + . . . + bN−2x[n − M − 2] + bN−1x[n − M + 1] (2)

=

N−1
∑

i=0

bix[n + N − M − i]. (3)

If N = M, this simplifies to

y[n] = b0x[n − 0] + b1x[n − 1] + . . . + bN−2x[n − (N − 2)] + bN−1x[n − (N − 1)] (4)

=

N−1
∑

i=0

bix[n − i]. (5)

This is the familiar result of the discrete convolution of the filter with the input data.

The equations above are the idealized, mathematical representations of an FIR filter because the arithmetic operations of

addition, subtraction, multiplication, and division are performed over the field of real numbers (ℜ,+,×), i.e., in the real number

system (or over the complex field if the data or coefficients contain imaginary values). In practice, both the coefficients and

the data values are constrained to be fixed-point rationals [1], a subset of the rationals. While this set is closed, it is not “bit

bounded”, i.e., the number of bits required to represent a value in the fixed-point rationals can be arbitrarily large. In a practical

system one is limited to a finite number of bits in the words used for the filter input, coefficients and filter output. Most current

digital signal processors provide arithmetic logic units and memory architectures to support 16 bit, 24 bit, or 32 bit wordlengths,

however, one may implement arbitrarily long lengths by customizing the multiplications and additions in software and utilizing

more processor cycles and memory. Similar choices can be made in digital hardware implementations. The final choices are

governed by many aspects of the design such as required speed, power consumption, SNR, cost, etc.

1.2 Conventions

We shall represent scaled quantities using the U(a, b) and A(a, b) notation described in [1].

There are generally two methods of operating on fixed-point data used today - integer and fractional. The integer method

interprets the data as integers (either natural binary or signed two’s complement) and performs integer arithmetic. For example,

the Texas Instruments TMS320C54x DSP is an integer machine. The fractional method assumes the data are fixed-point

rationals bounded between -1 and +1. The Motorola 56002 DSP is an example of a machine which uses fractional arithmetic.

Except for an extra left shift performed in fractional multiplies, these two methods can be considered equivalent. In this article

we shall utilize the integer method because I find it simpler and I am more familiar with it.

Digital Signal Labs Public Information

s

Technical Reference

Practical Considerations in Fixed-Point FIR Filter Imple-
mentations 4 (15)

Author Date Time Rev No. Reference

Randy Yates 11–Sep–2010 19:26 PA5 n/a fir.tex

2 Scaling FIR Coefficients

Consider an FIR filter with N coefficients b0, b1, . . . , bN−1, bi ∈ ℜ. From [1], we see that in fixed-point arithmetic a binary

word can be interpreted as an unsigned or signed fixed-point rational. Although there are a number of situations in which the

filter coefficients could be the same sign (and thus could be represented using unsigned values), let us assume they are not and

hence that we must utilize signed fixed-point rationals for our coefficients. Thus we must find a way of representing, or more

accurately, of approximating, the filter coefficients using signed fixed-point rationals.

Since a signed fixed-point rational is a number in the form Bi/2
b, where Bi and b are integers, −2M−1 ≤ Bi ≤ 2M−1 − 1, and M

is the wordlength used for the coefficients, we determine the approximation b′
i

of coefficient bi by choosing a value for b and

then determining Bi as

Bi = round(bi · 2
b). (6)

Then

b′i = Bi/2
b
. (7)

In general, b′
i

is only an approximation of bi because of the rounding operation. This approximation phenomenom is referred

to as coefficient quantization because, in a real sense, we are quantizing the coefficients in amplitude just exactly like an A/D

converter amplitude quantizes an analog input signal. We can determine the “quantization error” ei between the approximation

and the real value by taking their difference:

ei = b′i − bi (8)

= Bi/2
b − bi (9)

=
round(bi · 2

b)

2b
− bi (10)

= round(bi,−b) − bi, (11)

where “round(x, y)” denotes rounding at bit y of the binary value x. The value y = 0 rounds at the units bit, with negative values

going to the right of the decimal and positive values going to the left of the units bit. For example, round(1.0010110,−5)=

1.00110.

The question we have not yet answered is: How do we choose b? In order to answer this, note that the maximum error eimax
a

quantized coefficient can have will be one-half of the bit being rounded at, i.e.,

eimax
= 2−b/2 (12)

= 2−b−1. (13)

It is now easy to see that, lacking any other criteria, the ideal value for b is the maximum it can be since that will result in the

least amount of coefficient quantization error. Well just what exactly is the maximum, anyway? After all, b is from the integers,

and the integers go to infinity. So the maximum is infinity, right?

Well, no. Again, considering the coefficient wordlength to be M (bits), note that a signed, two’s complement value has a

maximum magnitude of 2M−1. Therefore we must be careful not to choose a value for b which will produce a Bi that has a

magnitude bigger than 2M−1. When a value becomes too big to be represented by the representation we have chosen (in this

case, M-bit signed two’s complement), we say that an overflow has occurred. Thus we must be careful to choose a value for b

that will not overflow the largest magnitude coefficient. We may compute this maximum value for b as

b = ⌊log2

(

(2M−1 − 1)/max(|bi|)
)

⌋, (14)

Digital Signal Labs Public Information

s

Technical Reference

Practical Considerations in Fixed-Point FIR Filter Imple-
mentations 5 (15)

Author Date Time Rev No. Reference

Randy Yates 11–Sep–2010 19:26 PA5 n/a fir.tex

where ⌊x⌋ denotes the greatest integer less than or equal to x.

In summary we see that, lacking any other criteria, the ideal value for b is the maximum value which can be used without

overflowing the coefficients since that provides the minimum coefficient quanization error. We emphasize this important result

by stating the following

Theorem 1 (First Coefficient Scaling Theorem). Let bi be a set of coefficients with scale factor b. Maximum precision is

preserved when b is chosen to be the maximum integer possible without overflowing the coefficient representation, i.e.,

b = ⌊log2

(

(2M−1 − 1)/max(|bi|)
)

⌋, (15)

where M is the coefficient wordsize in bits.

Example 1

Consider a 4-tap FIR filter with the following coefficients:

b0 = +1.2830074 (16)

b1 = −2.3994138 (17)

b2 = +0.1234689 (18)

b3 = +0.0029153 (19)

Assuming 16-bit wordlengths, find a) the scaling factor b, and b) the coefficient approximations b′
i

using rule 1.

Solution:

b = ⌊log2

(

(2M−1 − 1)/max(|bi|)
)

⌋ (20)

= ⌊log2

(

(216−1 − 1)/2.3994138)
)

⌋ (21)

= ⌊13.73727399⌋ (22)

= 13. (23)

Since 213 = 8192,

b′0 = round(+1.2830074× 8192)/8192 (24)

= +1.2829589843750 (25)

b′1 = round(−2.3994138× 8192)/8192 (26)

= −2.3994140625000 (27)

b′2 = round(+0.1234689× 8192)/8192 (28)

= +0.1234130859375 (29)

b′3 = round(+0.0029153× 8192)/8192 (30)

= +0.0029296875000 (31)

So that’s it, right? We now know everything there is to know about coefficient scaling, right?

Digital Signal Labs Public Information

s

Technical Reference

Practical Considerations in Fixed-Point FIR Filter Imple-
mentations 6 (15)

Author Date Time Rev No. Reference

Randy Yates 11–Sep–2010 19:26 PA5 n/a fir.tex

Well, no. Remember when I said, “...lacking any other criteria...”? Well, guess what—there are other criteria.

Adding two J-bit values requires J+1 bits in order to maintain precision and avoid overflow when there is no a-priori knowledge

about the values being added. For example, if the 16-bit signed two’s complement values 21,583 and 12,042 are summed, the

result is 33,625. Since the maximum value for a 16-bit signed two’s complement number is 32,767, we must add an extra bit

to avoid overflowing. Also, since the result is odd, the least-significant bit (bit 0) is set, so we cannot simply take the upper 16

bits of the 17 bit result without losing precision. As a counterexample, consider processing a stream of data in which any two

adjacent samples are known to be of opposite signs. In this case, we would be able to guarantee that the sum of two adacent

J-bit samples would never overflow J bits.

We may easily extend this rule to sums of multiple values and state the result as the

Theorem 2 (Fixed-Point Summation Theorem). The sum of N J-bit values requires J + ⌈log2 N⌉ bits to maintain precision and

avoid overflow if no information is known about the values.

Let us consider an N-tap FIR filter which has L-bit data values and M-bit coefficients. Then using the relations above, the final

N-term sum required at each time interval n,

y[n] = b′0x[n] + b′1x[n − 1] + b′2x[n − 2] + . . . + b′N−1 x[n − N + 1], (32)

requires L + M + ⌈log2 N⌉ bits in order to maintain precision and avoid overflow if no information is known about the data or

the coefficients. For example, a 64-tap FIR filter (N = 64) with 16-bit coefficients and data values (L = M = 16) requires

L + M + ⌈log2(N)⌉ = 32 + ⌈log2(64)⌉ = 32 + 6 = 38 bits in order to maintain precision and avoid overflow.

Most processors and hardware components provide the ability to multiply two M-bit values together to form a 2M-bit result.

For example, the Integrated Device Technolgy 7210 multiplier-accumulator performs 16x16 multiplies to a 32-bit result. Most

general purpose and some DSP processors provide an accumulator that is the same width as the multiplier output. For example,

the Texas Instruments TMS320C50 DSP provides a 16x16 multiplier and a 32-bit accumulator. Some DSP processors provide

a 2M + G-bit accumulator, where G denotes “guard bits” (to be explained shortly). For example, the Texas Instruments

TMS320C54x DSP provides a 16 × 16 multiplier with a 32-bit output and a 40-bit accumulator (M = 16, G = 8).

Therefore another criteria in the design of FIR filters is that the final convolution sum fit within the accumulator. To put it

algebraically, we require that

L + M + ⌈log2 N⌉ ≤ L + M +G =⇒ ⌈log2 N⌉ ≤ G, (33)

where we have assumed we have no information about the data or the coefficients. The key point here is that the number of

bits required for the filter output increase (in general, with unconstrained coefficient and data inputs) with the length of

the filter. The quantity ⌈log2 N⌉ is sometimes referred to as bit growth (see, e.g., [2]).

For those situations in which G = 0 (e.g., the TMS320C50), we see that we immediately have a problem for even a two-tap

FIR filter since that filter requires 2M + ⌈log2 2⌉ = 2M + 1 bits and the accumulator is only 2M bits. This is precisely why

the extra G bits which are available on some processors are called “guard bits” - they guard against overflow when performing

summations. However, even though the accumulator may have guard bits, it is still possible to overflow the accumulator if

log2 N > G, i.e., if we attempt to use a filter that is longer than 2G taps.

So how do we address the problem? The easiest solution is to simply decree that we shall maintain an optimistic outlook. In

other words, we will acknowledge that our filter won’t work for “the most general case” and hope and pray that those cases

(i.e., those combinations of N data values) which would result in overflow for our filter will never occur. However, this is rather

like sticking one’s head in the sand, because if and when overflows occur, they can be catastrophic. In signed two’s complement

systems, overflows cause abrupt variations in output levels which, in the case of digital audio, are very audible to say the least

and extremely rude to be more accurate.

Digital Signal Labs Public Information

s

Technical Reference

Practical Considerations in Fixed-Point FIR Filter Imple-
mentations 7 (15)

Author Date Time Rev No. Reference

Randy Yates 11–Sep–2010 19:26 PA5 n/a fir.tex

Another solution is to redesign the filter to use fewer taps. However, if there are no guard bits, then the filter would be reduced

to a gain control (i.e., 1 tap), and even with guard bits, the number of filter taps is usually at a premium to begin with anyway

(i.e., we can almost always use more taps to implement a better filter).

Yet another solution is to scale down the data values by K bits before applying the filter, thus allowing 2K more taps in the filter

before overflowing. This is, in general, a horrible idea because it greatly degrades the signal-to-noise ratio of the signal path by

6 dB per bit.

An alternate solution is essentially to borrow those “growth” bits from the coefficients. Since the M we use in equation (15)

is the number of bits used for the coefficients, we can use an alternate value that is smaller than the M bits available in our

hardware. After all, just because we have an M-bit wordlength available for the coefficients doesn’t mean we have to use all M

bits. Therefore let us use M′ bits for the coefficients, where M′ ≤ M.

What size shall we make M′? Calculate it based on the width of the accumulator:

M + M′ + ⌈log2 N⌉ ≤ 2M +G =⇒ M′ ≤ min(M,M +G − ⌈log2 N⌉), (34)

where we’ve constrained M′ to be no larger than M.

We summarize this section with the following

Theorem 3 (Coefficient Sizing Theorem). If no information is known about the data or the coefficients, then the coefficient

wordlength M′ must be

M′ ≤ min(M, A − L − ⌈log2 N⌉), (35)

in order to avoid overflow and preserve precision in an N-tap FIR filter output, where M is the maximum coefficient wordlength,

A is the accumulator wordlength, and L is the data wordlength.

WARNING: There is a cost associated with this solution: increased coefficient quantization error. This fact should not be

overlooked when weighing the options.

Example 2

We continue with the 4-tap FIR filter we used in example 1, Assume the maximum coefficient wordlength is 16 bits, the data

wordlength is 16 bits and the accumulator wordlength is 32 bits.

a. Find the value for M′, i.e., the effective coefficient wordlength that will avoid overflow and guarantee precision is preserved

in the filter output using rule 2.

b. Substitute this result into coefficient scaling rule 1 to obtain b′, the new coefficient scaling.

Solution:

a. Simply plug the numbers into equation (35):

M′ = min(M, A − L − log2 N) (36)

= min(16, 32 − 16 − log2 4) (37)

= min(16, 32 − 16 − 2) (38)

= min(16, 14) (39)

= 14. (40)

Digital Signal Labs Public Information

s

Technical Reference

Practical Considerations in Fixed-Point FIR Filter Imple-
mentations 8 (15)

Author Date Time Rev No. Reference

Randy Yates 11–Sep–2010 19:26 PA5 n/a fir.tex

b. Substitute M=14 into equation (15):

b′ = ⌊log2

(

(2M−1 − 1)/max(|bi|)
)

⌋ (41)

= ⌊log2

(

(214−1 − 1)/2.3994138)
)

⌋ (42)

= ⌊11.73731892⌋ (43)

= 11. (44)

We see that the reduction of wordlength by 2 bits in part a also results in a reduction in the coefficient scale factor by 2 bits and

thus increases the coefficient quantization error. This is the price paid for ensuring the result will not overflow.

So now we’re really done, right? We certainly must now know everything there is to know about coefficient scaling, right?

Well, no. Remember when I said, “...if no information is known about the data or coefficients...”? It is often the case that the

coefficient values are known at design time (and won’t change). Therefore we do have information about the coefficients. How

can we use this information to improve our filter architecture?

Since we are constantly concerned about overflow in fixed-point digital signal processing, let us begin by considering what

combination (or combinations) of N input data values will provide maximum output from a given N-tap FIR filter. In order to

answer this, recall the triangle inequality:

|a + b| ≤ |a| + |b|. (45)

Using the obvious relation a + b ≤ |a + b|, we then have

a + b ≤ |a + b| ≤ |a| + |b| ⇒ a + b ≤ |a| + |b|. (46)

We may generalize this 2-term sum to an N-term sum. This means that the signs of x[k] that will make the terms bix[n − i] all

positive in the convolution sum

y[n] =

N−1
∑

i=0

bix[n − i], (47)

will result in larger output. This occurs when sgn(x[n− i]) = sgn(bi). We may therefore rewrite the set of x[n− i]s that maximize

the output as

x[n − i] = sgn(bi) · |x[n − i]|. (48)

Our convolution sum now looks like this:

y[n] =

N−1
∑

i=0

bix[n − i] (49)

=

N−1
∑

i=0

bi

(

sgn(bi) · |x[n − i]|
)

. (50)

But note that sgn(r)r = |r| for any real value r. Therefore bisgn(bi) = |bi|, and we have

y[n] =

N−1
∑

i=0

|bi||x[n − i]|. (51)

Digital Signal Labs Public Information

s

Technical Reference

Practical Considerations in Fixed-Point FIR Filter Imple-
mentations 9 (15)

Author Date Time Rev No. Reference

Randy Yates 11–Sep–2010 19:26 PA5 n/a fir.tex

What further property could we assign to x[n − i] that would maximize this sum? It should be obvious that if we maximize

all the magnitudes of x[n], then we maximize the sum. Therefore let |x[n − i]| = xMAX , where xMAX denotes the maximum

magnitude possible for x[n − i]. Then

yMAX[n] = yMAX =

N−1
∑

i=0

|bi|xMAX (52)

= xMAX

N−1
∑

i=0

|bi|. (53)

At this point let us also define the concept of coefficient area, denoted by α and defined as

α =

N−1
∑

i=0

|bi|, (54)

so that

yMAX = α · xMAX . (55)

Let’s pause and consider our results so far. We see that the maximum output value of an FIR filter is a function of the coefficient

area, α, in the filter. This seems intuitively obvious. We shall see in a few paragraphs that this coefficient area is also a more

accurate characterization of the filter’s bit growth than the ⌈log2 N⌉ presented previously.

So far we have been operating in the infinite-precision (i.e., real) domain. Now express this result in terms of the unscaled

integers X and Bi, where x is scaled A(ax, bx) and bi is scaled A(ab, bb) so that x = X/2bx and bi = Bi/2
bb :

yMAX = (xMAX)(

N−1
∑

i=0

|bi|) (56)

= (xMAX)(α) (57)

= (XMAX/2
bx)(α). (58)

Let us use the previous notation of A for accumulator wordlength, L for the data wordlength, and M for the coefficient

wordlength. Rules of fixed-point arithmetic dictate that the scaling of the result yMAX will be A(A − bx − bb − 1, bx + bb).

Thus

YMAX/2
bx+bb = yMAX (59)

= (XMAX/2
bx)(α) (60)

YMAX = α · 2
bb · XMAX . (61)

We know that the maximum of any T -bit signed two’s complement integer is 2T−1−1, which, when T >> 0, can be approximated

as simply 2T−1. We can use this fact and the last result to determine a constraint on the accumulator width A:

2A−1 ≥ YMAX = α · 2
bb · 2L−1. (62)

If we take the log base 2 of both sides and solve for bb:

A − 1 ≥ log2 α + bb + L − 1 (63)

bb ≤ A − L − log2 α. (64)

Digital Signal Labs Public Information

s

Technical Reference

Practical Considerations in Fixed-Point FIR Filter Imple-
mentations 10 (15)

Author Date Time Rev No. Reference

Randy Yates 11–Sep–2010 19:26 PA5 n/a fir.tex

Since bb must be an integer, we can tighten this constraint to be

⇒ bb ≤ A − L − ⌈log2 α⌉. (65)

This important result says that in order to avoid overflow in the output the maximum value for the coefficient scale factor bb is

established by the accumulator wordlength A, the data wordlength L, and the coefficient area α.

There are therefore three criteria that the coefficient scale factor bb seeks to satisfy:

1. We seek to maximize bb in order to reduce coefficient quantization error.

2. Given a maximum coefficient word length M, we seek to constrain bb in order that the coefficient with the largest

magnitude is representable.

3. Given the accumlator wordlength A, the data wordlength L, and the information about the coefficients we call the coeffi-

cient area α, we seek to constrain bb so that overflows in the convolution sum are avoided.

Hence we see that the value for bb that meets all three criteria is given by the following function:

bb = min(⌊log2

(

(2M−1 − 1)/max(|bi|)
)

⌋, A − L − ⌈log2 α⌉) (66)

We summarize these requirements in the following

Theorem 4 (Second Coefficient Scaling Theorem). If bi are coefficients of an FIR filter of length N, M is the coefficient word

length, A is the width of the accumulator, and L is the data word length, then the optimal coefficient scale factor bb is given by

the expression

bb = min
(⌊

log2

(

(2M−1 − 1)/max(|bi|)
)⌋

, A − L − ⌈log2 α⌉
)

, (67)

where

α =

N−1
∑

i=0

|bi|. (68)

Example 3

Consider the 16-tap FIR filter b0 = 1 and b1, b2, . . . , b15 = 0. Assuming an accumulator wordlength of 32 bits, a data wordlength

of 16 bits, and a coefficient wordlength of 16 bits, use Theorem 4 to establish the optimum value for the coefficient scale factor

bb.

Solution:

Calculate α:

α =

15
∑

i=0

|bi| (69)

= 1. (70)

Digital Signal Labs Public Information

s

Technical Reference

Practical Considerations in Fixed-Point FIR Filter Imple-
mentations 11 (15)

Author Date Time Rev No. Reference

Randy Yates 11–Sep–2010 19:26 PA5 n/a fir.tex

Then

bb = min(⌊log2

(

(2M−1 − 1)/max(|bi|)
)

⌋, A − L − ⌈log2 α⌉) (71)

= min(⌊log2

(

(216−1 − 1)/1)
)

⌋, 32 − 16 − ⌈log2 1⌉) (72)

= min(14, 16) (73)

= 14. (74)

In this case we see that the limiting factor is that which allows the coefficients to be representable.

Example 4

Consider the 16-tap FIR filter b0, b1, b2, . . . , b15 = 0.0625. Assuming an accumulator wordlength of 32 bits, a data wordlength

of 16 bits, and a coefficient wordlength of 16 bits, use Theorem 4 to establish the optimum value for the coefficient scale factor

bb.

Solution:

Calculate α:

α =

15
∑

i=0

|bi| (75)

= 1. (76)

Then

bb = min(⌊log2

(

(2M−1 − 1)/max(|bi|)
)

⌋, A − L − ⌈log2 α⌉) (77)

= min(⌊log2

(

(216−1 − 1)/.0625)
)

⌋, 32 − 16 − ⌈log2 1⌉) (78)

= min(18, 16) (79)

= 16. (80)

In this case we see that the limiting factor is that which avoids overflow in the accumulator.

Example 5

Consider the 16-tap FIR filter b0, b1, b2, . . . , b15 = 0.0625. Assuming an accumulator wordlength of 40 bits, a data wordlength

of 16 bits, and a coefficient wordlength of 16 bits, use Theorem 4 to establish the optimum value for the coefficient scale factor

bb.

Solution:

Calculate α:

α =

15
∑

i=0

|bi| (81)

= 1. (82)

Digital Signal Labs Public Information

s

Technical Reference

Practical Considerations in Fixed-Point FIR Filter Imple-
mentations 12 (15)

Author Date Time Rev No. Reference

Randy Yates 11–Sep–2010 19:26 PA5 n/a fir.tex

Then

bb = min(⌊log2

(

(2M−1 − 1)/max(|bi|)
)

⌋, A − L − ⌈log2 α⌉) (83)

= min(⌊log2

(

(216−1 − 1)/.0625)
)

⌋, 40 − 16 − ⌈log2 1⌉) (84)

= min(18, 24) (85)

= 18. (86)

In this case we see that the limiting factor is that which allows the coefficients to be representable, but only because this

accumulator has 8 guard bits, otherwise overflow in the accumulator would limit bb as in example 4. Also note that the extra

accumulator guard bits allow the coefficient quantization error to be less than in example 4.

3 Choosing the FIR Filter Output Word

As stated earlier, a DSP or hardware multiplier has an output wordsize that is usually two or more times the size of the input

wordsize. For example, the TI TMS320C54x typically uses a 16-bit input data sample size and a 16-bit coefficient wordsize

multiplied to a 32-bit output, and has a 40-bit accumulator. If we want to requantize the value in the 40-bit accumulator that

results after a convolution sum back to a 16-bit output word size, we must choose a subset of the accumulator bits. How do we

choose these bits?

Given a set of two’s complement coefficients with wordlength M and coefficient area α, and an input wordsize of L bits, the

number of bits required to maintain precision while simultaneously avoiding overflow in the convolution sum is

Γ = M + L + λ, (87)

where

λ = ⌈log2(α)⌉, (88)

α =

N−1
∑

i=0

|bi|, (89)

and where bi are the real-valued coefficients. In order to avoid overflow when truncating this width Γ to the output wordlength

K, we extract the upper K bits, Γ − K to Γ − 1, numbering the LSB of the accumulator as bit 0.

For example, if L = 16, M = 16, and α = 3, then

Γ = M + L + λ (90)

= 32 + ⌈log2(3)⌉ (91)

= 34, (92)

and if the output wordlength K = 16, then you must take bits 18 to 33,

If the accumulator size A is less than Γ, then the filter may overflow the accumulator during the convolution sum. In this case,

the best choice is to choose the top K bits of the accumulator.

Some quantities of interest:

1. The scaling of the Γ output bits is A(ax + ab + λ + 1, bx + bb).

Digital Signal Labs Public Information

s

Technical Reference

Practical Considerations in Fixed-Point FIR Filter Imple-
mentations 13 (15)

Author Date Time Rev No. Reference

Randy Yates 11–Sep–2010 19:26 PA5 n/a fir.tex

2. The scaling of the top K bits is A(ax + ab + λ + 1,K − ax − ab − λ − 2).

3. To take the K-bit output from the Γ-bit (or greater) accumulator, shift right by S = M + λ.

Example 6

L = 16 A(0, 15) (93)

M = 16 A(1, 14) (94)

λ = 2 (95)

K = 16. (96)

Solution:

1. Compute Γ:

Γ = M + L + λ (97)

= 34. (98)

2. Scaling of Γ:

A(aΓ, bΓ) = A(ax + ab + λ + 1, bx + bb) (99)

= A(4, 29). (100)

3. Scaling of top K bits of Γ:

A(aK , bK) = A(ax + ab + λ + 1,K − ax − ab − λ − 2) (101)

= A(4, 11). (102)

4. Shift right:

S = M + λ (103)

= 18. (104)

4 Quantization Noise in FIR Filters

[under construction]

Digital Signal Labs Public Information

s

Technical Reference

Practical Considerations in Fixed-Point FIR Filter Imple-
mentations 14 (15)

Author Date Time Rev No. Reference

Randy Yates 11–Sep–2010 19:26 PA5 n/a fir.tex

Rev. Date/Time Person Changes

PA1 08-Nov-2006 Randy Yates Initial Version

PA2 17-Jan-2007 Randy Yates 1. Updated document design, adding among other

more minor changes the time as well as date to the

document header.

2. Added this revision table.

3. Converted what used to be an equation into the

third coefficient scaling theorem (Theorem 4).

4. Converted max to max in various equations.

PA3 27-Mar-2007 Randy Yates 1. Replaced omitted division in equations (66)

and (67).

2. Changed max to max in equations (71), (77),

and (83).

3. Replaced sgn by sgn in various places.

PA4 03-Sep-2010 Randy Yates 1. Changed “estimate” to “approximation”

throughout section 2.

PA5 11-Sep-2010 Randy Yates 1. Changed size of logo in header.

2. Changed plain dash into correct typographical

long dash.

3. Inserted omitted ceiling function in text after

Theorem 2.

4. Added term bit growth to section 2 and added

reference to Xilinx document where used.

5. Multiple corrections.

6. Multiple rewordings.

7. Corrected problems in section 3 and added ex-

ample.

Table 1: Revision History

4.1 Truncation

4.2 Rounding

4.3 Dithering

4.4 Noise-shaping

5 Conclusions

My hope is that this article will allow the FIR filter designer to clearly see the effects that the choices of wordlength, scaling,

and processing architecture have on signal integrity, and that the material is clear and accurate. Errors, suggestions, etc., should

be mailed to yates@ieee.org.

6 Revision History

Table 1 lists the revision history for this document.

Digital Signal Labs Public Information

mailto:yates@ieee.org

s

Technical Reference

Practical Considerations in Fixed-Point FIR Filter Imple-
mentations 15 (15)

Author Date Time Rev No. Reference

Randy Yates 11–Sep–2010 19:26 PA5 n/a fir.tex

7 References

[1] R. Yates, “Fixed-Point Arithmetic: An Introduction.”

[2] LogiCORE IP FIR Compiler v5.0, Xilinx, April 2010, product Specification.

Digital Signal Labs Public Information

http://www.digitalsignallabs.com/fp.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fir_compiler_ds534.pdf

	1 Introduction
	1.1 Motivation
	1.2 Conventions

	2 Scaling FIR Coefficients
	3 Choosing the FIR Filter Output Word
	4 Quantization Noise in FIR Filters
	4.1 Truncation
	4.2 Rounding
	4.3 Dithering
	4.4 Noise-shaping

	5 Conclusions
	6 Revision History
	7 References

