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1 Introduction
This document presents definitions of signed and unsigned fixed-point binary number representations and
develops basic rules and guidelines for the manipulation of these number representations using the common
arithmetic and logical operations found in fixed-point DSPs and hardware components.
While there is nothing particularly difficult about this subject, I found little documentation either in hardcopy
or on the web. What documentation I did find was disjointed, never putting together all of the aspects of fixed-
point arithmetic that I think are important. I therefore decided to develop this material and to place it on
the web not only for my own reference but for the benefit of others who, like myself, find themselves needing
a complete understanding of the issues in implementing fixed-point algorithms on platforms utilizing integer
arithmetic.
During the writing of this paper, I was developing assembly language code for the Texas Instruments TMS320C50
Digital Signal Processor, thus my approach to the subject is undoubtedly biased towards this processor in terms
of the operation of the fundamental arithmetic operations. For example, the C50 performs adds and multiplies
as if the numbers are simple signed two’s complement integers. Contrast this against the Motorola 56k series
which performs two’s complement fractional arithmetic, with values always in the range −1 ≤ x < +1.
It is my hope that this material is clear, accurate, and helpful. If you find any errors or inconsistencies, please
email me at yates@ieee.org.
Finally, the reader may be interested in the author’s related paper [1] on the application of fixed-point arithmetic
to the implementation of FIR filters.

2 Fixed-Point Binary Representations
A collection of N (N a positive integer) binary digits (bits) has 2N possible states. This can be seen from
elementary counting theory, which tells us that there are two possibilities for the first bit, two possibilities for
the next bit, and so on until the last bit, resulting in

2× 2× . . .× 2⏞ ⏟⏟ ⏞
Ntimes

= 2N

possibilities.
In the most general sense, we can allow these states to represent anything conceivable. In the case of an N -bit
binary word, some examples are up to 2N :
1. students at a university;
2. species of plants;
3. atomic elements;
4. integers;
5. voltage levels.
Drawing from set theory and elementary abstract algebra, one could view a representation as an onto mapping
between the binary states and the elements in the representation set (in the case of unassigned binary states,
we assume there is an “unassigned” element in the representation set to which all such states are mapped).
The salient point is that there is no meaning inherent in a binary word, although most people are tempted to
think of them (at first glance, anyway) as positive integers (i.e., the natural binary representation, defined in
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the next section). However, the meaning of an N-bit binary word depends entirely on its interpretation,
i.e., on the representation set and the mapping we choose to use.
In this section, we consider representations in which the representation set is a particular subset of the rational
numbers. Recall that the rational numbers are the set of numbers expressible as j/k, where j, k ∈ Z, k ̸= 0, and
Z is the set of integers. The subset to which we refer are those rationals for which k = 2N , N a non-negative
integer.
We also further constrain the representation sets to be those in which every element in the set has the same
number of binary digits and in which every element in the set has the binary point at the same position, i.e.,
the binary point is fixed. Thus these representations are called “fixed-point.”
The following sections explain four common binary representations: unsigned integers, unsigned fixed-point
rationals, signed two’s complement integers, and signed two’s complement fixed-point rationals. We view the
integer representations as special cases of the fixed-point rational representations, therefore we begin by defin-
ing the fixed-point rational representations and then subsequently show how these can simplify to the integer
representations. We begin with the unsigned representations since they require nothing more than basic alge-
bra. Appendix A.3 defines the notion of a “two’s complement” and two’s complement binary numbers and may
be useful to review prior to reading section 2.3.

2.1 Unsigned Fixed-Point Rationals
An N-bit binary word is defined as an unsigned fixed-point rational when it is mapped to the subset Pb(N) of
the non-negative rationals given by

Pb(N) = {p/2b | 0 ≤ p ≤ 2N − 1, p ∈ Z},

where b is a non-negative integer.
Note the following:

1. Pb(N) contains 2N elements.

2. P0(N) is the set of non-negative integers {0, 1, . . . , 2N − 1}.

3. P0(N) is the first 2N elements of the natural numbers [2, p. 9].

4. P0(N) is commonly referred to in digital hardware, processor, and software design as N -bit unsigned
numbers [3, p. 12].

2.2 The Operations of One’s Complement and Two’s Complement
Consider an N-bit binary word x interpreted as if in the N-bit natural binary representation (i.e., U(N, 0)). The
one’s complement of x is defined to be an operation that inverts every bit of the original value x. This can be
performed arithmetically in the U(N, 0) representation by subtracting x from 2N − 1. That is, if we denote the
one’s complement of x as x̃, then

x̃ = 2N − 1− x.

The two’s complement of x, denoted x̂, is determined by taking the one’s complement of x and then adding one
to it:

x̂ = x̃+ 1

= 2N − x.

(1)
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Example 2.1 (one’s complement)
The one’s complement of the U(8,0) number 03h (0000,0011b) is FCh (1111,1100b).

Example 2.2 (two’s complement)
The two’s complement of the U(8,0) number 03h (0000,0011b) is FDh (1111,1101b).

2.3 Signed Fixed-Point Rationals
An N-bit binary word is defined as a signed fixed-point rational when it is mapped to the subset Rb(N) of the
positive and negative rationals given by

Rb(N) = {p/2b | − 2N−1 ≤ p ≤ 2N−1 − 1, p ∈ Z},

where b is a non-negative integer.
Note the following:

1. Rb(N) contains 2N elements.

2. Rb(N) contains both positive and negative elements.

3. R0(N) is the set of integers {−2N−1,−2N−1 + 1, . . . ,−1, 0,+1, . . . ,+2N−1 − 2,+2N−1 − 1}.

4. R0(N) is called the set of signed two’s complement integers for bit-width N [4, p. 519]. See Appendix A.3
for a discussion of two’s complement binary numbers.

3 Fixed-Point Binary Notations
3.1 Unsigned U(a, b) Notation
We define the notation U(a, b) as the set Pb(N), where N = a+ b (see section 2.1).
In the U(a, b) representation, the nth bit, counting from right to left and beginning at 0, has a weight of 2n/2b =
2n−b. Note that when n = b the weight is exactly 1. Similar to normal everyday base-10 decimal notation, the
binary point is between this bit and the bit to the right. This is sometimes referred to as the implied binary
point. A U(a, b) representation has a integer bits and b fractional bits.
The value of a particular N-bit binary number x in a U(a, b) representation is given by the expression

x = (1/2b)

N−1∑︂
n=0

2nxn

where xn represents bit n of x. The range of a U(a, b) representation is from 0 to (2N − 1)/2b = 2a − 2−b.
For example, the 8-bit unsigned fixed-point rational representation U(6, 2) has the form

b5b4b3b2b1b0.b−1b−2,

where bit bk has a weight of 2k. Note that since b = 2 the binary point is to the left of the second bit from the
right (counting from zero), and thus the number has six integer bits and two fractional bits. This representation
has a range of from 0 to 26 − 2−2 = 64− 1/4 = 63 3/4.
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The unsigned integer representation can be viewed as a special case of the unsigned fixed-point rational rep-
resentation where b = 0. Specifically, an N-bit unsigned integer is identical to a U(N, 0) unsigned fixed-point
rational. Thus the range of an N-bit unsigned integer is

0 ≤ U(N, 0) ≤ 2N − 1.

and it has N integer bits and 0 fractional bits. The unsigned integer representation is sometimes referred to
as “natural binary.”

Example 3.1 (8-bit unsigned fixed-point U(6, 2))
This number has 6 + 2 = 8 bits and the range is from 0 to 26 − 1/22 = 63.75. The value 8Ah (1000,1010b) is

(1/22)(21 + 23 + 27) = 34.5.

Example 3.2 (16-bit unsigned fixed-point U(−2, 18))
This number has −2+18 = 16 bits and the range is from 0 to 2−2−1/218 = 0.2499961853027. The value 04BCh
(0000,0100,1011,1100b) is

(1/218)(22 + 23 + 24 + 25 + 27 + 210) = 1212/218 = 0.004623413085938.

Example 3.3 (16-bit unsigned fixed-point U(16, 0))
This number has 16+0 = 16 bits and the range is from 0 to 216−1 = 65, 535. The value 04BCh (0000,0100,1011,1100b)
is

(1/20)(22 + 23 + 24 + 25 + 27 + 210) = 1212/20 = 1212.

3.2 Signed A(a, b) Notation
We define the notation A(a, b) as the set Rb(N), where N = a+ b+ 1 (see section 2.3).
The value of a specific N-bit binary number x in an A(a,b) representation is given by the expression

x = (1/2b)

[︄
−2N−1xN−1 +

N−2∑︂
n=0

2nxn

]︄
,

where xn represents bit n of x. The range of an A(a,b) representation is

−2N−1−b ≤ x ≤ +2N−1−b − 1/2b.

Note that the number of bits in the magnitude term of the sum above (the summation, that is) has one less bit
than the equivalent prior unsigned fixed-point rational representation. Further note that these bits are the
N − 1 least significant bits. It is for these reasons that the most-significant bit in a signed two’s complement
number is usually referred to as the sign bit.

Example 3.4 (16-bit signed fixed-point A(13, 2))
This number has 13+2+1=16 bits and the range is from −213 = −8192 to +213 − 1/4 = 8191.75.

3.3 Q Notation
This notation has been defined by Texas Instruments and ARM (and possibly others) previously. See [5] and
[6, sec.4.7.9], respectively.
Both signed and unsigned fixed-point numbers can be designated by the Q notation. The type of the represen-
tation, signed or unsigned, must be specified or understood from the context.
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3.3.1 Unsigned Notation
The set of unsigned fixed-point rationals Pb(N) can be designated by the popular Q notation as Qb or as Qa.b.
When using the Qb notation, the word width N cannot be determined from the notation and must be specified
or understood from the context. The Qa.b notation is equivalent to the U(a, b) notation, and the word width
N = a + b. In either case, there are b fractional bits in the word. If Qa.b is specified, or it is known that there
are N total bits in the word, then there are a = N − b integer bits.

Example 3.5 (Q15, unsigned fixed-point rational with 15 fractional bits)
This number has an unknown total number of total and integer bits and 15 fractional bits. If it is determined
from context to have N total bits, it is comprised of 15 fractional bits and N − 15 integer bits, equivalent to a
U(N − 15, 15). If N = 16, for example, it is equivalent to the notations Q1.15 and U(1, 15).

Example 3.6 (Q17.15, unsigned fixed-point rational with 17 + 15 = 32 total bits)
This is similar to the previous example except that the total number of bits is 32. It is equivalent to a U(17, 15).

3.3.2 Signed Notation
The set of signed fixed-point rationals Rb(N) can be designated by the popular Q notation as Qb or as Qa.b.
When using the Qb notation, the word width N cannot be determined from the notation and must be specified
or understood from the context. The Qa.b notation is equivalent to the A(a, b) notation, and the word width
N = a + b + 1. In either case, there are b fractional bits in the word. If Qa.b is specified, or it is known that
there are N total bits in the word, then there are a = N − b − 1 integer bits. As in the A(a, b) notation, the
sign bit is not considered as part of the integer (a) part.

Example 3.7 (Q15, unsigned fixed-point rational with 15 fractional bits)
This number has an unknown total number of total and integer bits and 15 fractional bits. If it is determined
from context to have N total bits, it is comprised of 15 fractional bits and N − 15 integer bits, equivalent to a
U(N − 15, 15). If N = 16, for example, it is equivalent to the notations Q1.15 and U(1, 15).

Note the following:

1. The Q notation is ambiguous in that it can represent either signed or unsigned fixed-point numbers.

2. There is an alternate Q notation for signed fixed-point rationals Qa.b in which a = N − b.

Example 3.8 (Q0.15, signed fixed-point rational with 15 fractional bits)
This number has 0+15+1 = 16 total number of bits and 15 fractional bits. It is comprised of 15 fractional bits
and one sign bit.

3.3.3 Exceptions to Standard Q Notation
Some special exceptions exist in the literature to the notation defined in sections 3.3.1 and 3.3.2:

1. ARM [6] defines Q15 to be shorthand for an unsigned Q1.15 and Q31 to be shorthand for a signed Q1.31.

2. TI [5] defines Q15 to be equivalent to the signed A(1, 15) notation.

These exceptions are avoided in this paper in order to provide the most consistent and general notation.
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4 Fundamental Rules of Fixed-Point Arithmetic
The following are practical rules of fixed-point arithmetic. For these rules we note that when a scaling can be
either signed (A(a, b)) or unsigned (U(a, b)), we use the notation X(a, b).

4.1 Unsigned Wordlength
The number of bits required to represent U(a, b) is a+ b.

4.2 Signed Wordlength
The number of bits required to represent A(a, b) is a+ b+ 1.

4.3 Unsigned Range
The range x of U(a, b) is 0 ≤ x ≤ 2a − 2−b.

4.4 Signed Range
The range x of A(a, b) is −2a ≤ x ≤ 2a − 2−b.

4.5 Signed Addition and Subtraction
Two signed binary numbers must be scaled the same in order to be added or subtracted. That is, A(c, d)+A(e, f)
or A(c, d)−A(e, f) is only valid if c = e and d = f .
If both operands of are allowed occupy the full range of the underlying integers, then the sum or difference of
two N -bit signed binary numbers scaled A(a, b) requires N + 1 bits in order to maintain precision and avoid
overflow. The result will be scaled A(a+ 1, b)

In general, the sum or difference of M N -bit signed binary numbers requires N + ⌈log2M⌉ bits to maintain
precision and avoid overflow.
This is referred to as bit growth and is one of the reasons ALUs in processors and digital hardware provide wide
accumulators.

4.6 Unsigned Addition and Subtraction
TBD, special cases when subtracting two unsigned values.

4.7 Unsigned Multiplication
U(a1, b1)× U(a2, b2) = U(a1 + a2, b1 + b2).

4.8 Signed Multiplication
A(a1, b1)×A(a2, b2) = A(a1 + a2 + 1, b1 + b2).

4.9 Unsigned Division
Let U(a3, b3) =

U(a1,b1)
U(a2,b2)

and consider the largest possible result:

largest result = largest dividend
smallest divisor

=
2a1 − 2−b1

2−b2
.

= 2a1+b2 − 2b2−b1 . (2)
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Thus we require

2a3 − 2−b3 ≥ 2a1+b2 − 2b2−b1 . (3)

It is natural to let a3 = a1 + b2, in which case the inequalities below result:

2a3 − 2−b3 ≥ 2a3 − 2b2−b1

−2−b3 ≥ −2b2−b1

2−b3 ≤ 2b2−b1

−b3 ≤ b2 − b1

b3 ≥ b1 − b2. (4)

Thus we have a constraint on b3 due to b1 and b2.
Now consider the smallest possible result:

smallest result = smallest dividend
largest divisor

=
2−b1

2a2 − 2−b2
. (5)

This then requires b3 to obey the following constraint:

2−b3 ≤ 2−b1

2a2 − 2−b2

b3 ≥ b1 + log2(2
a2 − 2−b2)

(6)

If we assume b2 is positive, (6) is the more stringent of the two constraints (4) and (6) on b3. We then express
(6) in a slightly simpler form:

b3 ≥ log2(2
a2+b1 − 2b1−b2). (7)

The final result is then

U(a1, b1)/U(a2, b2) = U(a1 + b2, ⌈log2(2a2+b1 − 2b1−b2)⌉). (8)

4.10 Signed Division
Let r = n/d where n is scaled A(an, bn) and d is scaled A(ad, bd). What is the scaling of r (A(ar, br))?

|rM | = |nM |
|dm|

(9)

=
2an

2−bd
(10)

= 2an+bd . (11)

Since this maximum can be positive (when the numerator and denominator are both negative), ar = an+bd+1.
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Similarly,

|rm| = |nm|
|dM |

(12)

=
2−bn

2ad
(13)

= 2−(ad+bn). (14)

This implies br = ad + bn.
Thus

A(an, bn)

A(ad, bd)
= A(an + bd + 1, ad + bn). (15)

4.11 Wordlength Reduction
Define the operation HIn(X(a, b)) to be the extraction of the n most-significant bits of X(a, b). Similarly, define
the operation LOn(X(a, b)) to be the extraction of the n least-significant bits of X(a, b). For signed values,

HIn(A(a, b)) = A(a, n− a− 1) and
LOn(A(a, b)) = A(n− b− 1, b). (16)

Similarly, for unsigned values,

HIn(U(a, b)) = U(a, n− a) and
LOn(U(a, b)) = U(n− b, b). (17)

4.12 Shifting
We define two types of shift operations below, literal and virtual, and describe the scaling results of each.
Note that shifts are expressed in terms of right shifts by integer n. Shifting left is accomplished when n is
negative.
4.12.1 Literal Shift
A literal shift occurs when the bit positions in a register move left or right. A literal shift can be performed for
two possible reasons, to divide or multiply by a power of two, or to change the scaling.
In both cases note that this will possibly result in a loss of precision or overflow assuming the output register
width is the same as the input register width.

4.12.1.1 Multiplying/Dividing By A Power of Two A literal shift that is done to multiply or divide by a
power of two shifts the bit positions but keeps the output scaling the same as the input scaling.
Thus we have the following scaling:

X(a, b) >> n = X(a, b). (18)
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Example 4.1 (Fixed-Point Division)
Let’s say X is a 16-bit signed two’s complement integer that is scaled A(14,1), or Q1. Let’s set that integer equal
to 128: X = +128 = 0x0080, and thus its scaled value is

x = X/21 (19)
= 128/2 (20)
= 64.0 (21)

Now we want to divide that by 4, so we shift it right by 2, X = X >> 2, so that the new value of X is 32. This
shift didn’t change the scaling since we are dividing by actually shifting, so it’s still scaled Q1 after the shift.
So now X = 32 and x = X/2 = 16.0. Since the original value of x was 64.0, we see that we have indeed divided
that value by 4, which was the objective.

Note that this is probably a bad way to multiply or divide a fixed-point value since, if you’re multiplying, you
run the risk of overflowing, and if you’re dividing, you run the risk of losing precision. It would be much better
to perform the multiplication or division using the "virtual shift" method described in section 4.12.2.

4.12.1.2 Modifying Scaling A literal shift that is done to modify the scaling shifts the bit positions and
makes the output scaling different than the input scaling. Thus we have the following scaling:

X(a, b) >> n = X(a+ n, b− n). (22)

Example 4.2 (Division By Modifying Scaling)
Again let’s say X is a 16-bit signed two’s complement integer that is scaled A(14,1), or Q1, and let’s set that
integer equal to 128: X = +128 = 0x0080, and thus its scaled value is

x = X/21 (23)
= 128/2 (24)
= 64.0 (25)

Now let’s say we want to change the scaling from Q1 to Q3 (or equivalently, from A(14,1) to A(12,3)). So we shift
the integer left by two bits: X = X << 2. So our new integer value is 512, but we’ve now also changed our
scaling as in equation 22 so that it’s A(12,3) (n = −2 here since we’re shifting left).
So in this case our final fixed-point value is still 512 / 8 = 64.0.

4.12.2 Virtual Shift

A virtual shift shifts the virtual binary point1 without modifying the underlying integer value. It can be used
as an alternate method of performing a multiplication or division by a power of two. However, unlike the literal
shift case, the virtual shift method loses no precision and avoids overflow. This is because the bit positions don’t
actually move—the operation is simply a reinterpretation of the scaling.

X(a, b) >> n = X(a− n, b+ n). (26)
1The virtual binary point is called virtual since it doesn’t actually exist anywhere except in the programmer’s mind.
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5 Concepts of Finite Precision Math
5.1 Precision
Precision is the maximum number of non-zero bits representable. For example, an A(13,2) number has a pre-
cision of 16 bits. For fixed-point representations, precision is equal to the wordlength.

5.2 Resolution
Resolution is the smallest non-zero magnitude representable. For example, an A(13,2) has a resolution of
1/22 = 0.25.

5.3 Range
Range is the difference between the most negative number representable and the most positive number repre-
sentable,

XR = XMAX+ −XMAX−. (27)

For example, an A(13,2) number has a range from -8192 to +8191.75, i.e., 16383.75.

5.4 Accuracy
Accuracy is the magnitude of the maximum difference between a real value and it’s representation.
The accuracy of both signed A(a,b) and unsigned U(a,b) representations is 1/2b+1 when rounding and 1/2b when
truncating.
For example, the accuracy of an A(13,2) number is 1/8 when rounding and 1/4 when truncating.
Note that accuracy and resolution are related as follows:

A(x) = R(x)/2, (28)

where A(x) is the accuracy of x and R(x) is the resolution of x.
Figure 1 is a visual illustration of accuracy versus precision. The origin is a two-dimensional value to be
represented. The green dots show representations with high accuracy but low precision. The red dots show
representations with low accuracy but high precision.

Figure 1: Accuracy vs. Precision
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5.5 Dynamic Range
Dynamic range is the ratio of the maximum absolute value representable and the minimum positive (i.e., non-
zero) absolute value representable. For a signed fixed-point rational representation A(a, b), dynamic range
is

×2a/2−b = 2a+b = 2N−1. (29)

For an unsigned fixed-point rational representation U(a, b), dynamic range is

(2a − 2−b)/2−b = 2a+b − 1 = 2N − 1. (30)

For N of any significant size, the “-1” is negligible.

6 Dimensional Analysis in Fixed-Point Arithmetic
6.1 Weights and Units
Consider a fixed-point variable x that is scaled A(ax, bx) or U(ax, bx). Denote the scaled value of the variable x
and the unscaled value X, so that

x = X/2bx .

Such a variable, for example a uint32_t X; in the C programming language, is inherently unitless.
Units, such as inches, seconds, furlongs/fortnight, etc., may be associated with a fixed-point variable by assign-
ing a weight wx to the variable:

wx = µx · ux (31)

where

µx = unit scaling factor of x, µx ∈ R (32)
ux = units of x, e.g., [m/s]. (33)

Units are defined in [7] and the tables of SI base and derived units shown there are nice examples. Note that
in this document we enclose units with square brackets ([ ]).
We may define separate weights for the scaled value x and the unscaled value X:

wx = µx · ux (34)
wX = µX · uX . (35)

However, note that the units of the variable does not depend on whether it is the scaled or unscaled value. Thus

ux = uX . (36)

The value and units of a physical quantity that is represented by x may be denoted αx and can be expressed as

αx = x · wx. (37)

Similarly for the unscaled variable X:

αX = X · wX . (38)
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However, note that αx = αX , so that

x · wx = X · wX (39)
X/2bx · wx = X · wX (40)

(41)

Factoring out X and expanding w, it can be shown that

µx = 2bxµX . (42)

Equivalently,

wx = 2bxwX . (43)

6.2 Principle of Dimensional Homogeneity
The principle of dimensional homogeneity states:

Only physical quantities having the same units may be compared, equated, added, or subtracted.

Example 6.1 (Dimensional Homogeneity)
Richard ran two kilometers during baseball practice after school and then walked another 800 meters home.
What is the total distance Richard traveled after school?

Solution
Kilometers cannot be added to meters. To add the two distances, either kilometers must be converted
to meters or meters must be converted to kilometers. Choosing the latter,

d = 2 [km] + 800 [m]× 1 [km]

1000 [m]
(44)

= 2.8 [km] . (45)

6.3 Principle of Scaling Homogeneity
The principle of scaling homogeneity for signed, fixed-point arithmetic states:

Only signed, fixed-point quantities having the same scaling may be compared, equated, added, or
subtracted.

A common situation which often must be addressed when the operations of addition or subtraction are per-
formed is that the number of resulting bits may be required to grow after the operations in order avoid overflow
and maintain precision (see section 4.5). This is referred to as bit growth.

Example 6.2 (Scaling Homogeneity: DC Cancellation)
A signal x[n] contains significant amounts of dynamic DC offset that is to be removed. Figure 2 represents an
architecture for estimating and cancelling the DC offset:
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x[n]

DC Estimator
w[n]

−

+ y[n]

Figure 2: DC Canceller

Assume the input signal x[n] is scaled A(15, 0) and the DC estimator output w[n] is a 32-bit signed two’s com-
plement integer scaled A(15, 16). Using the principle of scaling homogeneity, determine a method of computing
x[n]− w[n] which will avoid overflow.

Solution
First convert x[n] to a 32-bit value. If we sign-extend x[n] on the right to a 32-bit value xs[n], the
result will be scaled A(15, 16).
If we were to simply compute xs[n]−w[n] using an A(15, 16) scaling, we would be obeying the principle
of scaling homogeneity, but we would run the risk of overflow. For example, if xs[n] is full-scale
positive and w[n] is full-scale negative, then the difference xs[n]− w[n] would overflow.
Instead, in order to avoid overflow and minimize the loss of precision, and in order to utilize typical
word lengths available in programming languages such as C, we perform a literal right shift of both
xs[n] and w[n] by n = 1 (see section 4.12.1.2) to obtain xsr[n] and wr[n], respectively, both scaled
A(16, 15). Such a literal right shift will result in no loss of precision in xs[n] and loss of only one
fractional bit in w[n].
We may then apply the principle of scaling homogeneity to compute y[n] = xsr[n]−wr[n], so that y[n]
is also a 32-bit signed two’s complement value scaled A(16, 15). Bit growth and overflow are avoided
at the cost of a very small loss of precision in the DC estimate.

These principles may be applied individually or in-toto.

6.4 Examples
Example 6.3 (Inertial Measurment Dimensional Analysis)
An inertial sensor provides an estimate of linear acceleration α̂(t) which is proportional to a voltage v(t):

α̂(t) = k · v(t), (46)

where the value of k depends on the units used to represent α̂(t),

k = κ · uα̂

uv
, (47)

where

κ = constant of proportionality specific to these units (48)
uα̂ = units used to represent α̂ (49)
uv = units used to represent v (50)

For this system, κ = 10 when uα̂ = m/s2 and uv = volts, so that the acceleration estimate α̂(t) in m/s2 can be
determined from the sensor voltage v(t) in volts as

α̂(t) = v(t) [volts] ·
[︃

10m
s2 · volt

]︃
. (51)

For example, if v(t0) = 1 [volt], then α̂(t0) = 10
[︁
m/s2

]︁
.
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The linear acceleration is processed digitally by converting the analog voltage v(t) to a signed, two’s complement
16-bit digital value X using a 16-bit bipolar A/D converter with a signed, two’s complement format and a
reference voltage of −1 [volt] for a full-scale negative value X = −32768. If we consider the incoming A/D
samples to be scaled A(1, 14), then

1. What are the corresponding scaled and unscaled weights?

Solution
We know that -32768 corresponds to -1.0 volts. From equation 51,

α̂(t) = v(t) [volts] ·
[︃

10m
s2 · volt

]︃
(52)

= −1 [volts] ·
[︃

10m
s2 · volt

]︃
(53)

= −10
[︂m

s2
]︂

(54)

Using the equation

αx = x · wx, (55)

we can determine the scaled weighting from equation 37,

wx =
αx

x
, (56)

and using the fact that α̂ = αx,

wx =
−10

[︂
m
s2

]︂
−32768/214

(57)

= 5

[︃
m
s2

]︃
. (58)

The unscaled weighting can be found from equation 43:

µX =
µx

2bx
(59)

=
5
[︂

m
s2

]︂
214

(60)

= 3.051757× 10−4

[︃
m
s2

]︃
. (61)

Unscaled Check:

32768× 3.051757× 10−4

[︃
m
s2

]︃
= 10

[︃
m
s2

]︃
. (62)

Scaled Check:

32768

214
× 5

[︃
m
s2

]︃
= 10

[︃
m
s2

]︃
. (63)

2. What are the maximum positive and maximum negative accelerations that can be sensed?
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Solution
We use the unscaled values and weights:
Maximum Positive:

αx(maxpos) = 32767× 3.051757× 10−4

[︃
m
s2

]︃
= 9.9999694

[︃
m
s2

]︃
(64)

Maximum Negative:

αx(maxneg) = −32768× 3.051757× 10−4

[︃
m
s2

]︃
= −10

[︃
m
s2

]︃
(65)

3. Assuming quantization using rounding is used, what is the quantization step size in m/s2 and what is the
mean-square error of the quantization noise?

Solution
The quantization step size is

αx(min) = 1× 3.051757× 10−4

[︃
m
s2

]︃
= 3.051757× 10−4

[︃
m
s2

]︃
(66)

Example 6.4 (Inertial Measurement System Bias)
The inertial sensor voltage v(t) in the previous example with the system at rest can be modeled as a Gaussian
random variable with an average value of 2.7803× 10−3 [volts]. What is the bias of the system in m/s2?

Solution
If θ is a value to be estimated and θ̂ is an estimator for θ, then the bias B(θ) of the estimator is defined
as

B(θ) = E{θ̂} − θ, (67)

where B(θ) is the bias, θ̂ is the estimator, and θ is the true value of the quantity being estimated
(See Hayes [8, p.72] and Kay [9, p.18]).
At rest, the true value of v(t) is 0 [volts]. Therefore the bias in volts is

B(θ) = E{θ̂} − θ (68)
= 2.7803× 10−3 [volts]− 0 [volts] (69)
= 2.7803× 10−3 [volts] . (70)

Note that we use the Principle of Dimensional Homogeneity (section ??) in the equation above.
To convert this voltage in m/s2, use equation 51:

α̂(t) = v(t) [volts] ·
[︃

10m
s2 · volt

]︃
(71)

= 2.7803× 10−3 [volts] ·
[︃

10m
s2 · volt

]︃
(72)

= 2.7803× 10−2

[︃
m
s2

]︃
. (73)
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7 Fixed-Point Analysis—An Example
An algorithm is usually defined and developed using an algebraically complete number system such as the real
or complex numbers. To be more precise, the operations of addition, subtraction, multiplication, and division
are performed (for example) over the field (ℜ,+,×), where subtraction is equivalent to adding the additive
inverse and division is equivalent to multiplying by the multiplicative inverse.
As an example, consider the algorithm for calculating the average of the square of a digital signal x(n) over the
interval N (here, the signal is considered to be quantized in time but not in amplitude):

y(n) =
1

N

N−1∑︂
k=0

x2(n− k). (74)

In this form, the algorithm implicitly assumes x(n) ∈ ℜ, and the operations of addition and multiplication are
performed over the field (ℜ,+,×). In this case, the numerical representations have infinite precision.
This state of affairs is perfectly acceptable when working with pencil and paper or higher-level floating-point
computing environments such as Matlab or MathCad. However, when the algorithm is to be implemented in
fixed-point hardware or software, it must necessarily utilize a finite number of binary digits to represent x(n),
the intermediate products and sums, and the output y(n).
Thus the basic task of converting such an algorithm into fixed-point arithmetic is that of determining the
wordlength, accuracy, and range required for each of the arithmetic operations involved in the algorithm. In
the terms of the fundamentals given in section 2, we need to determine a) whether the value should be signed
(A(a, b)) or unsigned (U(a, b)), b) the value of N (the wordlength), and c) the values for a and b (the accuracy and
range). Any two of wordlength, accuracy, and range determine the third. For example, given wordlength and
accuracy, range is determined. In other words, we cannot independently specify all of wordlength, accuracy,
and range.
Continuing with our example, assume the input x(n) is scaled A(15, 0), i.e., plain old 16-bit signed two’s comple-
ment samples. The first operation to be performed is to compute the square. According to the rules of fixed-point
arithmetic, A(15, 0) ·A(15, 0) = A(31, 0). In other words, we require 32 bits for the result of the square in order
to guarantee that we will avoid overflow and maintain precision. It is at this point that design tradeoffs and
other information begin to affect how we implement our algorithm.
For example, in one possible scenario, we may know a-priori that the input data x(n) do not span the full
dynamic range of the A(15, 0) representation, thus it may be possible to reduce the 32-bit requirement for the
result and still guarantee that the square operation does not overflow.
Another possible scenario is that we do not require all of the precision in the result, and this also will reduce
the required wordlength.
In yet a third scenario, we may look ahead to the summation to be performed and realize that if we don’t scale
back the result of each square we will overflow the sum that is to subsequently be performed (assuming we have
a 32-bit accumulator). On the other hand, we may be using a fixed-point processor such as the TI TMS320C54x
which has a 40-bit accumulator, thus we have 8 “guard bits” past the 32-bit result which may be used in the
accumulations to prevent overflow for up to 256 (8=log2(256)) sums.
To complete our example, let’s further assume that a) we keep all 32 bits of the result of the squaring operation,
b) the averaging “time,” N , does not exceed 24 = 16 samples, c) we are using a fixed-point processor with an
accumulator of 32 + 4 = 36 bits or greater, and d) the output wordlength for y(n) is 16 bits (A(15, 0)). The final
decision that must be made is to determine which method we will use to form a 16-bit value from our 36-bit
sum. It is clear that we should take the 16 bits from bits 20 to 35 of the accumulator (where bit 0 is the LSB) in
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order to avoid overflowing the output, but shall we truncate or round? Shall we utilize some type of dithering
or noise-shaping? These are all questions that relate to the process of quantization since we are quantizing a
36-bit word to a 16-bit word. The theory of quantization and the tradeoffs to be made are outside the scope of
this topic.

8 Applications of Fixed-Point Binary Arithmetic
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10 Terms and Abbreviations
ALU Arithmetic Logic Unit.

DSP Digital Signal Processor, or Digital Signal Processing.

classes of integers

Z = {. . . ,−2,−1, 0,+1,+2 . . .} (all integers).
Z+ = {0, 1, 2, . . .} (non-negative integers).
P = {1, 2, 3, . . .} (positive integers).

wind-up Wind-up refers to the problem of increasing (or decreasing) values in a perfect digital integrator.
Two’s complement arithmetic can handle wind-up when the final value is back within the two’s comple-
ment range. See section ??.
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12 Revision History
Table 1 lists the revision history for this document.

Rev. SVN Rev. Date/Time Person Changes
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PA3 n/a 29-Mar-2007 Randy Yates 1. Updated document design.
PA4 n/a 17-Apr-2007 Randy Yates 1. Removed “this is a test” from introductory paragraph (!).

2. Added justification of signed division scaling.
PA5 n/a 23-Aug-2007 Randy Yates Updated shift section.
PA6 n/a 07-Jul-2009 Randy Yates 1. Added derivation of unsigned division result.

2. Changed units notation to remove what looked like a subtractions (−).
PA7 n/a 01-Jan-2013 Randy Yates 1. Changed “right” to “left” in description of binary point position in last paragraph of page four

(section 2.1). Thanks to Rick Lyons for finding this error!
2. Added examples to sections 4.12.1.1 and 4.12.1.2.

PA8 n/a 02-Jan-2013 Randy Yates 1. Changed “will lose precision” to “run the risk of losing precision” in section 4.12.1.1.
PA9 2185 17-Sep-2020 Randy Yates Implemented corrections suggested by Heath Caldwell:

1. Added missing n in equation in section 2.3.
2. Made range variable consistently x in sections 4.3 and 4.4.
3. Changed fonts to TEX Gyre Termes.
4. Added SVN Rev column to this table.

PA10 n/a 03-Jul-2021 Randy Yates 1. Moved signed and unsigned representations sections under one major heading, “Fixed-Point Bi-
nary Representations” (section 2).
2. Added Q representations for both unsigned and signed to section 2.
3. Created an example environment and placed all examples into it.
4. Added accuracy versus precision figure (Figure 1).
5. Changed fonts to tgschola.

Table 1: Revision History

A Signed Binary Numbers
Historically, there have been three methods used to represent signed binary numbers: signed magnitude, one’s
complement, and two’s complement ([3, section 1-5] and [4, section 20.1]). Examples of a 3-bit number under
each of these three representations are shown in Table 2.
In an N -bit signed binary integer, there are N binary digits 0, 1, . . . , N − 1 (counted right to left). Binary digit
N − 1 is a sign bit: 0 denotes positive values and zero (+0, or simply 0), and 1 denotes negative values (possibly
negative zero, -0). The remaining N − 1 binary digits 0, 1, . . . , N − 2 are used to represent the magnitude of the
integer in some form as determined by the representation.
Note that we will use M to denote the number of bits in the magnitude, so that M = N − 1.
The non-negative integers m, 0 ≤ m ≤ 2M − 1 of an N -bit signed binary number have the same mappings to
binary values in all representations. It is only the negative numbers which vary depending on representation.
The following subsections delve into more details on each.
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Decimal
Signed

Magnitude
One’s

Complement
Two’s

Complement

−4 — — 100
−3 111 100 101
−2 110 101 110
−1 101 110 111
−0 100 111 —
+0 000 000 000
+1 001 001 001
+2 010 010 010
+3 011 011 011

Table 2: Example Signed Binary Representations for N = 3

Decimal
Signed Magni-
tude

One’s Comple-
ment

Two’s Comple-
ment

-4 — — 100
-3 111 100 101
-2 110 101 110
-1 101 110 111
-0 100 111 —
+0 000 000 000
+1 001 001 001
+2 010 010 010
+3 011 011 011

Table 3: Old Example Signed Binary Representations for N = 3

A.1 Signed Magnitude
In this representation, bits 0, 1, . . . ,M − 1 specify the magnitude of integer, whether the sign bit is positive or
negative.
Zero has two possible representations, +0 (000) and -0 (100). If -0 and +0 are considered equivalent, then this
representation under-utilizes the binary information in the sense that 2N binary states can only represent
2N − 1 integers.
Signed magnitude is also awkward when used in digital hardware, thus one of the complement representations
are typically used instead.

A.2 One’s Complement
In this representation, bits 0, 1, . . . ,M − 1 are the one’s complement of the magnitude for a non-positive integer,
or the normal magnitude for a positive integer. Note that since there two forms of zero, -0 and +0, zero can be
negative. In this case, as the rules dictate, the complement applied to the magnitude.
The one’s complement of an M -bit (non-negative) integer m, m̄, can be expressed as

m̄ ≜ (2M − 1)−m. (75)

If m is expressed as a binary number, This is equivalent to the bitwise inversion of the entire M -bit word m.
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As in signed magnitude, zero has two possible representations, +0 (000) and -0 (100), and this representation
under-utilizes the binary information.

A.3 Two’s Complement
In this representation, bits 0, 1, . . . ,M − 1 are the two’s complement of the magnitude for a negative integer, or
the magnitude for a positive integer.
The two’s complement of an M -bit (non-negative) integer m, m̃, can be expressed as

m̃ ≜ (2M − 1)−m+ 1 (76)
= m̄+ 1. (77)

This shows that the two’s complement is the one’s complement plus one.
Two’s complement representation has the useful property that it fully utilizes the binary information since the
redundant “-0” no longer occupies a value. Note also that the full-scale negative value is now −2(N−1).

B Binary Addition
Our goal in this section is to derive how to implement two’s complement signed binary addition, but in order to
do that, let us first review how to implement unsigned binary addition.

B.1 Unsigned Binary Addition
A half adder is shown in Figure 3. It has two binary inputs, wi and xi, and two binary outputs, the result yi
and the carry out coi. Table 4 is the truth table for the half adder.

y

co

w x

Half Adder

wi xi

yi

coi

Figure 3: Half Adder

Inputs Outputs

wi xi coi yi
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Table 4: Half Adder Truth Table

A full adder (shown in Figure 4) extends the half adder so that it has three inputs: binary inputs wi and xi,
and the carry in cii from a previous stage’s carry out coi−1. Table 5 is the truth table for the full adder.
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y

co

w x

ciFull Adder

wi xi

yi

coi cii

Figure 4: Full Adder

Inputs Outputs

cii wi xi coi yi
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Table 5: Full Adder Truth Table

We can connectN full adders together to make anN -bit unsigned binary (parallel) adder. An example is shown
in Figure 5 for N = 4.

y

co

w x

ciFull Adder
y

co

w x

ciFull Adder
y

co

w x

ciFull Adder
y

co

w x

ciFull Adder 0n/c

y0y1y2y3

w0w1w2w3 x0x1x2x3

Figure 5: Four-Bit Unsigned Binary Adder, y = w + x, N = 4

Now note that the range of an unsigned, N -bit binary word is 0 to 2N − 1. Thus the maximum value SM which
can result from adding two N -bit binary words w + x is

SM = 2N − 1 + 2N − 1 (78)
= 2N+1 − 2. (79)

In other words, the number of bits required to represent an N -bit addition without overflow is N + 1.
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Now also consider this fact regarding unsigned binary parallel adders: the output of the ith full adder does not
depend on any of the subsequent full adders i+1, i+2, . . . , N −1. This means that bits 0 to N −1 of a full adder
are correct regardless of whether or not the adder is extended to N +m, bits, m >= 1.
Therefore if we use N bits to perform the sum of two N -bit unsigned binary values x+ y, then if the result does
not overflow, the result x + y is correct and in the range 0 to 2N − 1. But if the result does overflow, then the
output result is x+ y− 2N , since the N +1 bit is truncated (i.e, subtracted), and again in the range 0 to 2N − 1.
Thus the N -bit unsigned binary addition (denoted ⊕) of two N -bit values x+ y is given as

x⊕ y = (x+ y) mod 2N , (80)

and where we define the modulus function a mod n as follows:

Definition: Modulus Function (a mod n)
If a is a non-negative integer and n is a positive integer, we define the modulus function a mod n to be the
remainder r of a/n, where 0 ≤ r < n.

Examples:

• 13 mod 6 = 1

• 8 mod 2 = 0

• 0 mod n = 0.

B.2 Signed Binary Addition
�This section utilizes abstract algebra, e.g. from [10] or [11].
Two’s complement addition is performed using the exact same full adder arrangement as in Figure 5. To prove
this we need the following:

1. The set of N -bit, unsigned fixed-point integers P0(N) as defined in section 2.1.

2. The set of N -bit, signed fixed-point integers R0(N) as defined in section 2.1.

3. A one-to-one and onto mapping ψ from R0(N) to P0(N), ψ : R0(N) → P0(N), defined as follows.
Given N ∈ P there are 2N elements of R0(N) and P0(N). We map the 2N−1 negative elements of R0(N),
−2N−1,−2N−1−1,−2N−1−2, . . . ,−1, to the the 2N−1 elements of P0(N), 2N−1, 2N−1+1, 2N−1+2, . . . , 2N−1,
and the 2N−1 positive elements ofR0(N), 0, 1, 2, . . . , 2N−1−1 to the the 2N−1 elements ofP0(N), 0, 1, 2, . . . , 2N−1−
1. Since this mapping is finite and onto, it is also 1-1, and therefore also has the obvious inverse mapping
ψ−1.

To prove our assertion, we need to show that ψ is a isomorphism from

C Quantization
C.1 Rounding
C.2 Truncation
C.3 Dithering

Digital Signal Labs Public Information


	Introduction
	Fixed-Point Binary Representations
	Unsigned Fixed-Point Rationals
	The Operations of One's Complement and Two's Complement
	Signed Fixed-Point Rationals

	Fixed-Point Binary Notations
	Unsigned U(a, b) Notation
	Signed A(a,b) Notation
	Q Notation
	Unsigned Notation
	Signed Notation
	Exceptions to Standard Q Notation


	Fundamental Rules of Fixed-Point Arithmetic
	Unsigned Wordlength
	Signed Wordlength
	Unsigned Range
	Signed Range
	Signed Addition and Subtraction
	Unsigned Addition and Subtraction
	Unsigned Multiplication
	Signed Multiplication
	Unsigned Division
	Signed Division
	Wordlength Reduction
	Shifting
	Literal Shift
	Multiplying/Dividing By A Power of Two
	Modifying Scaling

	Virtual Shift


	Concepts of Finite Precision Math
	Precision
	Resolution
	Range
	Accuracy
	Dynamic Range

	Dimensional Analysis in Fixed-Point Arithmetic
	Weights and Units
	Principle of Dimensional Homogeneity
	Principle of Scaling Homogeneity
	Examples

	Fixed-Point Analysis—An Example
	Applications of Fixed-Point Binary Arithmetic
	Acknowledgments
	Terms and Abbreviations
	References
	Revision History
	Signed Binary Numbers
	Signed Magnitude
	One's Complement
	Two's Complement

	Binary Addition
	Unsigned Binary Addition
	Signed Binary Addition

	Quantization
	Rounding
	Truncation
	Dithering


