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1 What Is A D/A Converter?

• Rick Lyons [1] derives A/D SNR as a function of word length
N and loading factor LF :

SNR = 6.02N + 4.77 + 20 log10(LF ),

• LF is the “loading factor,” a value representing the normalized
RMS value of the input signal. For a sine wave, LF = 0.707.
Here we ignore the constant factor of 1.77 dB and we round the
N coefficient to 6 to simplify.

• This can be generalized to express the SNR of any N-bit
amplitude-quantized transfer function and thus applies to D/A
conversion as well.
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For a generic D/A converter in which bandwidth, output bit-width,
and other parameters may not be clearly defined, this motivates
the following

Definition 1 An N-bit D/A converter converts a stream of
discrete-time, linear, PCM samples of N bits at sample rate Fs to a
continuous-time analog voltage with a signal-to-quantization-noise
power ratio of 6N dB in a bandwidth of Fs/2 Hz.

This gives a basis by which we may evaluate the number of bits of
any converter architecture (resistor-ladder, delta-sigma, etc.).
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2 Delta Sigma Conversion Revealed

• A delta sigma D/A converter “transforms” (i.e. requantizes)
an N -bit PCM signal into a 1-bit signal.

• Why requantize to a lower resolution? Because a 1-bit output is
extremely easy to implement in hardware and there are ways to
make that one-bit output have the SNR of an N -bit converter.

• How do you get an N -bit-to-1-bit quantizer, which would
normally only produce a 6 · 1 = 6 dB SNR, to produce the
required 6N dB SNR? By using oversampling and
noise-shaping to modify the 1-bit output.
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3 Oversampling

• Quantization noise is assumed white and uniformly-distributed
with a total power of q2/12, where q is the quantization
step-size.

• NOTE: The total quantization noise power does NOT
depend on the sample rate!!!

• Quantization noise modeled as a noise source added to the
signal:
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Figure 1: Quantizer Model
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Figure 2: Quantizer Transfer Function
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The “in-band” quantization noise power can be reduced by
sampling at a rate higher than Nyquist.
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Figure 3: 2× Oversampled Quantization Noise Spectrum
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Since the total in-band noise power is reduced, the number of
“effective” bits is increased from the actual bits according to the
relationship

M = 4K ,

where M is the oversampling factor and K is the number of extra
bits.
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Integer oversampling ratios are performed by using an interpolator:
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Figure 4: Interpolator Block Diagram
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Oversampling alone is an inefficient way to obtain extra
bits of resolution. A gain of even a few bits would require
astronomical oversampling ratios! We must use the additional
technique of noise-shaping to make a 1-bit converter feasible.
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4 Noise-Shaping

Shapes the oversampled quantization noise spectrum so that less
noise is in-band:
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Figure 5: Typical Noise-Shaped Spectrum
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Noise-shaping is accomplished by placing feedback around the
quantizer:
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Figure 6: Classic First-Order Noise-Shaper
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The transfer function of figure 6 is derived as follows:

W (z) = X(z)− z−1Y (z)

Σ(z) = W (z) + z−1Σ(z) =⇒ Σ(z) =
W (z)

1− z−1

Y (z) = Σ(z) + Q(z) =
W (z)

1− z−1
+ Q(z)

(1− z−1)Y (z) = W (z) + (1− z−1)Q(z)

= X(z)− z−1Y (z) + (1− z−1)Q(z)

Y (z) = X(z) + (1− z−1)Q(z) (1)

It is clear from equation 1 that the signal X(z) passes through
unmodified while the quantization noise Q(z) is modified by the
term 1− z−1. In delta-sigma modulator terminology this
quantization noise coefficient is referred to as the noise transfer
function [2], or NTF, denoted N(z). Thus N(z) = 1− z−1.
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Figure 7: Noise Transfer Function Power Response of a First-Order
Modulator
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The noise-shaping can be made stronger by embedding integrator
loops:
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Figure 8: Second-Order Delta-Sigma Modulator
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• The number of embeddings is termed the order of the
modulator. An Lth-order modulator has NTF

N(z) = (1− z−1)L.

• It can be shown [3] that the in-band quantization noise power
relative to the maximum signal power as a function of
oversampling ratio M and modulator order L is

6L + 3
2π2L

M2L+1.
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Figure 9: Ratio of In-Band Quantization Noise Power To Signal
Power versus Oversampling Ratio and Modulator Order L
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5 Alternate Modulator Architecture

Y (z) = X(z) + (1− z−1H(z))Q(z). (2)

To be equivalent with the classic architecture, H(z) = z − zG(z). Is
H(z) realizable???
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Figure 10: Alternate Delta-Sigma Modulator Architecture
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Add dither to get rid of “birdies:”
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Figure 11: Delta Sigma Modulator with Dither
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Figure 12: Equivalent Dithered Modulator
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6 Psychoacoustic Noise-Shaping

• The alternate architecture admits any NTF of the form

N(z) = 1− z−1H(z).

• The classic Lth-order modulator NTF contains L zeros at
z = 1 (DC),

N(z) =
(z − 1)L

zL
.

• When L is even we can use conjugate pairs to place the zeros
at any L/2 frequencies on the unit circle.
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Example: For L = 2, we can place the zero at any frequency f ,
0 ≤ f ≤ MFs/2:

N(z) =
z2 − 2 cos(π f

MFs
) + 1

z2
.
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Figure 13: Zeros for Psychoacoustic Noise-Shaping, θ = π f
MFs

.
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Figure 14: NTF Power Response |N(f)|2 of Psychoacoustically
Noise-Shaped Modulator with f = 4 kHz
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7 The Complete Modulator
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Figure 15: Delta Sigma D/A Converter Block Diagram
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