
A Hardware Implementation of the
Nordstrom-Robinson Error Correction Code

CIS4930 Final Project

Charles R. Yates and Eric Sowers

January 13th, 1997 0:04

Abstract

In this project, we build a digital system for de-
tecting all errors and correcting a limited subset of
errors using the Nordstrom-Robinson error correc-
tion code. A glimpse of the theory behind the op-
erations performed is presented, followed by a de-
tailed explanation of the hardware theory and im-
plementation. Finally, chip utilization for this de-
sign is examined and a performance analysis per-
formed.

University Of South Florida

Typeset using PCTEX For Windows

A Hardware Implementation of the Nordstrom-Robinson Error Correction CodeCharles R. Yates and Eric Sowers

Table of Contents

1 Introduction . 1
2 A Few Coding Theory Concepts and the Nordstrom-Robinson Code . 1

2.1 A Convenient Class of Correctable Errors . 4
3 Hardware Theory of Operation . 4
4 Implementation . 4

4.1 Overview . 4
4.2 User I/O Interface . 6
4.3 HT ROM . 6
4.4 Timing Generator . 7
4.5 Multiplier/Accumulator . 8
4.6 I/O Circuitry . 10

5 Chip Usage . 10
6 Performance Analysis . 10
7 Conclusion . 10
8 References . 12

A Hardware Implementation of the Nordstrom-Robinson Error Correction CodeCharles R. Yates and Eric Sowers

List of Figures
Figure Title Page

1 A Communication System Model . 1
2 Hardware Algorithm Flowchart . 5
3 Hardware Block Diagram . 6
4 I/O Configuration . 7
5 HT ROM .MEM File . 8
6 Schematic Sheet 1: Codeword Input Registers, Top Hierarchical Level 9
7 Schematic Sheet 2: Decoded Message MUX and Syndrome/Decoded Message Display . . 11
8 Schematic Sheet 3: Input Codeword Display . 13
9 Schematic Sheet 4: Timing Generator, ROM, and S and C Registers 15
10 Schematic Sheet 5: Z4 Multiplier/Accumulator . 17

A Hardware Implementation of the Nordstrom-Robinson Error Correction CodeCharles R. Yates and Eric Sowers

List of Tables
Table Title Page
1 Cayley Table for Z4 Addition (⊕) . 2
2 Cayley Table for Z4 Multiplication (⊗) . 2
3 Z4 to Binary Mapping . 6

A Hardware Implementation of the Nordstrom-Robinson Error Correction CodeCharles R. Yates and Eric Sowers

1 Introduction

Any real-world communication system is plagued by noise and thus susceptible to errors in the trans-
mission of information. Theoretical work by pioneers such as Claude Shannon laid the foundation for
methods of encoding signals such that errors can be reduced to arbitrarily small probability.

The Nordstrom-Robinson (NR) code is one such error correction code currently being investigated by
Varanasi and Klein. In this project, we present a hardware design utilizing the Xilinx 4003 FPGA that
decodes incoming NR codes. The design detects all “detectable” errors and corrects a convenient subset
of correctable errors.

2 A Few Coding Theory Concepts and the Nordstrom-Robinson Code

One model of a communication system is shown in figure 1 (from [1]). In any real-world implementation,
noise corrupts the signal, reducing the probability that the received message m* is identical to the
transmitted message m. In one of his seminal papers on the subject [2], Claude Shannon showed that
the probability of error in the received message m* can be made arbitrarily small by appropriate use of
channel encoding.

Source Source Encoder Modulator

Channel

Destination Source Decoder Demodulator

Noise

s

Binary
Data

m

m*s*

Channel Encoder

Channel Decoder

cw

cw*

Figure 1. A Communication System Model

One such channel encoding method currently being researched by Dr. M.R. Varanasi (Professor in the
Department of Computer Science and Engineering at the University of South Florida, Tampa) and Ron
Klein (Ph.D. candidate in the Department of Computer Science and Engineering at the University of
South Florida, Tampa) is the Nordstrom-Robinson (NR) code. NR encoding is a block code, which means
that data from the source encoder is partitioned into blocks of n adjacent, non-overlapping symbols. In
the NR code, n = 4. Symbols in the NR code are elements of the ring Z4, (for an excellent introduction to
Abstract Algebra, including groups, rings, and fields, see [3]). In Z4 the normal mathematical operation
of + becomes ⊕ and × becomes ⊗. The Cayley tables for each of these operations are shown in tables 1

A Hardware Implementation of the Nordstrom-Robinson Error Correction CodeCharles R. Yates and Eric Sowers

and 2. Subtraction is performed by adding the inverse (since, in a ring, addition forms an abelian group,
and inverses exist in any group).

⊕ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Table 1. Cayley Table for Z4 Addition (⊕)

⊗ 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Table 2. Cayley Table for Z4 Multiplication (⊗)

The input message M to the NR encoder is a 1× 4 vector of Z4 symbols. The resulting codeword CW
is a 1× 8 vector of Z4 symbols. The codeword is calculated from a generator matrix, referred to as the
G matrix, as follows:

CW = M ×G,

where

G =

1 0 0 0 3 1 2 1
0 1 0 0 1 2 3 1
0 0 1 0 3 3 3 2
0 0 0 1 2 3 1 1

 ,

and where all operations are performed over Z4.

We may partition the G matrix into two 4× 4 matrices as follows:

G = [I | G′] ,

where I is the 4× 4 identity matrix and G′ is simply the right half of the original G matrix:

G′ =

3 1 2 1
1 2 3 1
3 3 3 2
2 3 1 1

 .

The codeword then becomes
CW = M ×G

= M × [I | G′]

= [M | M ×G′] ,

A Hardware Implementation of the Nordstrom-Robinson Error Correction CodeCharles R. Yates and Eric Sowers

where both M and M ×G′ are 1× 4 vectors. This shows that the codeword can be viewed as two parts:
the left four symbols are simply the original message, while the right four symbols are a multiplication
of the original message with the G′ matrix. We denote the left four symbols of the codeword as CWL

and the right four symbols as CWR.

In order to detect whether or not an error occurred, the received codeword CW ′ is multiplied by the
transpose of an H matrix in order to generate the “syndrome” S, a 1×4 vector which provides information
on the validity of the received codeword:

S = CW ′ ×HT ,

where

H =

1 3 1 2 1 0 0 0
3 2 1 1 0 1 0 0
2 1 1 3 0 0 1 0
3 3 2 3 0 0 0 1

 .

If the syndrome evaluates to the 0 vector, then the received codeword is identical to the transmitted
codeword. Non-zero syndrome vectors indicate an error has occurred.

As an example, the codeword for the message [1 3 2 0] is computed as follows:

CW = M ×G

= [1 3 2 0]×

1 0 0 0 3 1 2 1
0 1 0 0 1 2 3 1
0 0 1 0 3 3 3 2
0 0 0 1 2 3 1 1

= [1 3 2 0 0 1 1 0] .

Notice that CWL is the original message. The syndrome for a perfectly-received codeword is then
computed as:

S = CW ′ ×HT

= [1 3 2 0 0 1 1 0]×

1 3 2 3
3 2 1 3
1 1 1 2
2 1 3 3
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

= [0 0 0 0]

For this example, let us introduce a single-symbol error into the received codeword such that it now
becomes CW ′ = [1 3 2 0 0 0 1 0]. The resulting syndrome would then be

S = CW ′ ×HT

= [1 3 2 0 0 0 1 0]×

1 3 2 3
3 2 1 3
1 1 1 2
2 1 3 3
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

= [0 3 0 0] .

A Hardware Implementation of the Nordstrom-Robinson Error Correction CodeCharles R. Yates and Eric Sowers

2.1 A Convenient Class of Correctable Errors

If the syndrome evaluates to the 0 vector, then the received codeword is identical to the transmitted
codeword, and the message can be extracted as CWL. If it can somehow be determined that only
symbols in CWR are corrupted, then the original message can be recovered again by simply extracting
CWL. If it can somehow be determined that only symbols in CWL are corrupted, then the original
message can be recovered by multiplying CWR by the inverse of the G′ matrix. This is easily seen by
remembering that CWR = M ×G′, hence

CWR ×G′−1 = M ×G′ ×G′−1

= M.

Klein’s research has shown that, within the subset of single-symbol errors, it can be easily distinguished
whether the error occurred in CWL or CWR. Specifically, assuming the error is a single-symbol er-
ror, a symbol error occurring in CWR will result in a syndrome pattern of [x 0 0 0], [0 x 0 0],
[0 0 x 0], or [0 0 0 x], where x can be any Z4 symbol. Conversely, any single-symbol error
occuring in CWL will never result in a syndrome containing three zeros. Hence we may state the
following:

If a single-symbol error has occurred, then the syndrome contains three
zeros if and only if the error occurred in CWR.

Since single-symbol errors are conveniently classified into these two types, it is these types of errors that
the hardware was designed to correct.

3 Hardware Theory of Operation

Figure 2 is a flowchart of the basic algorithm which the hardware uses to decode messages. In the
flowchart, “C” designates the corrected message, calculated as CW ′

R ×G′−1.

The syndrome is computed. If the syndrome is zero, then the transmission is reported as error-free,
otherwise an error in the transmission is reported. If the syndrome contains three or more zeros, then
the corrected message C is chosen as the decoded message M . Note that if the syndrome is zero, then
the corrected message C is still correct (although its computation is not necessary). If the syndrome
contains less than three zeros, then CW ′

L is chosen as the decoded message M .

4 Implementation

4.1 Overview

The design was entered using the OrCAD schematic editing system. The hierarchical capabilities of the
tools were used to generate five pages of schematics at three levels. After schematic generation, the
inet, annotate, sdt2xnf, xnfmerge, and ppr utilities were used to generate a Xilinx LCA file targeted
for the 4003 series. Finally, the XACT editor was invoked to load the LCA, makebits, and download to
the chip.

A Hardware Implementation of the Nordstrom-Robinson Error Correction CodeCharles R. Yates and Eric Sowers

Input CW'

S = CW' x HT

S=0?

Error = TRUE

Error = FALSE

C = CW'R x G'-1

3-0 S?

M = CW'L

M = CY

N

Figure 2. Hardware Algorithm Flowchart

Figure 3 illustrates a block diagram of the hardware, not including user I/O functions. The processing
of the data follows the flowchart in figure 2 almost exactly. The timing circuit is designed such that the
syndrome (S Reg) and corrected message (C Reg) are always calculated from the codeword. The result
is chosen via the quad 2-1 MUX based on the “3 zeros” detector. Note that the base unit of information
in the block diagram is a Z4 symbol. Each symbol is equivalent to two binary bits.

A simple but important characteristic of this design is the mapping of Z4 symbols to their binary
representations. The mapping is done in the “natural” manner, as shown in table 3.

A single Z4 multiplier-accumulator is used to perform the matrix multiplications. Both the HT and
G′−1 matrices are stored in the ROM. The timing circuit operates all signals to perform the appropriate
calculations.

A Hardware Implementation of the Nordstrom-Robinson Error Correction CodeCharles R. Yates and Eric Sowers

Input
Codeword

Evaluation
Codeword

8-1
MUX

HT and
G'-1

ROM
(64x2)

S
Regx +

REG
CLR

Z4 Multiplier-Accumulator

C
Reg

3 Zero
Detect

All Zero
�

Detect

Quad
2-1

MUX

Timing/Control

Error

Decoded
Message

(M')

Figure 3. Hardware Block Diagram

Z4 Symbol Binary Representation
0 00
1 01
2 10
3 11

Table 3. Z4 to Binary Mapping

4.2 User I/O Interface

Figure 4 illustrates the user I/O interfaces for the circuit. The Xilinx 4003 Evaluation Board was utilized
for this implementation. Since the number of switches and display devices are limited on this board,
techniques such as input switch addressing and output multiplexing were necessary.

Codeword symbols are entered by setting the desired codeword symbol data on S1 and S0, the desired
codeword symbol address (0-7, 0 being the least significant symbol) on S2-S4, and then pulsing the
Codeword Symbol Load switch S7. Symbols from the input codeword are constantly multiplexed on the
7-segment LED display labeled “Codeword Symbol” at a rate of approximately 1 Hz. The decimal point
on the “Codeword Symbol” display flashes on the “0th” symbol so the sequence can be read. The input
codeword is not evaluated (i.e., decoded) until the “Evaluate Codeword” switch (S6) is pulsed.

4.3 HT ROM

The HT ROM was generated using the memgen utility. Figure 5 shows the file that was used as input to
memgen in order to generate the HT ROM device. In addition, several steps are necessary in order to add
the device to the schematic library. Once it is added, one simply selects it from the library and places

A Hardware Implementation of the Nordstrom-Robinson Error Correction CodeCharles R. Yates and Eric Sowers

Xilinx 4003
FPGA

SW1

SW0

SW4

SW3

SW2

SW7

SW6

Load CW' Symbol

Evaluate CW'

CW' Symbol Addr2

CW' Symbol Addr1

CW' Symbol Addr0

CW' Symbol D1

CW' Symbol D0

Codeword Error

Codeword Symbol
Display

Decoded Message Symbol/
Syndrome Symbol

Display

Multiplex Clock

Symbol 0

Syndrome/Message*

Figure 4. I/O Configuration

it on the schematic, just as you would any other device in the schematic libraries.

The HT ROM is a 64x2 ROM containing both the H transpose matrix and the G′−1 matrix. The data
is indexed first by column, then by row, with the top left corner corresponding to address 0. The HT

matrix is in the first 32 locations, followed by the G′−1 matrix is in the lower 32 locations. The first four
symbols of each column in the G′−1 matrix are set to zero since this matrix only requires half the space
as the HT matrix. This layout was simply convenient—a more efficient design can be implemented.

4.4 Timing Generator

The timing generator is shown in figure 9, along with the ROM and S and C registers. The design is fully
synchronous, with all clocks driven by the PCLK signal from the calling schematic. A 64-state counter is
the basis of the circuit. The syndrome is calculated in the first 32 states, while the corrected message is
calculated in the last 32 states.

For both syndrome and corrected message calculations, the codeword symbols are addressed using an
inverted version of the 3 LSBs of the counter. This causes the symbols to be addressed in reverse order,
i.e., symbol 7 is addressed at time 0, symbol 6 at time 1, etc.

During the syndrome calculation, the ACCCLR (accumulator clear) signal is asserted on every eighth PCLK
clock pulse, causing the accumulator latch to clear on the beginning of the next PCLK pulse. Thus
the codeword symbols are multiplied by the data in the ROM and accumulated for each column of
the matrix data in the ROM, just as a human normally does when computing matrix multiplications.

A Hardware Implementation of the Nordstrom-Robinson Error Correction CodeCharles R. Yates and Eric Sowers

Figure 5. HT ROM .MEM File

The Sn SELECT signals cycle with the counter and are enabled every eighth PCLK pulse, causing the
accumulation to be latched into symbol n of the S register on the first accumulation cycle of the next
symbol. Note that the decoder signals are reversed since the addressing results in the most significant
symbol being calculated first.

Calculation of the corrected message proceeds almost identically, except that the ACCCLR signal is asserted
every fourth PCLK pulse. This results in two accumulations being performed for every symbol. Since
the Cn SELECT signal only goes active on the eighth PCLK pulse, only the second calculation is latched
into the C register. The ROM data is arranged so this results in the proper calculations. Since the first
four symbols of each group of eight in the G′−1 ROM data are zero, it really wasn’t necessary to use
a different ACCCLR signal. Originally, the ROM was going to be half as deep since the G′−1 matrix is
actually part of the HT matrix and can be derived from the HT matrix ROM using special addressing
techniques. However, it was determined that it would be easier and more straightforward to simply enter
in the G′−1 matrix into the ROM.

bmp

4.5 Multiplier/Accumulator

The multiplier/accumulator is shown in figure 10. It is a two-bit device which operates in Z4, thus the
⊕ and ⊗ operations are performed using tables 1 and 2, respectively.

The Z4 addition is indentical to standard two-bit binary addition with the carry ignored, therefore
the two-bit adder library component was utilized. The logic equations were derived for ⊗ and simple
combinational logic implements the result.

A Hardware Implementation of the Nordstrom-Robinson Error Correction CodeCharles R. Yates and Eric Sowers

D
a
t
e
:

D
e
c
e
m
b
e
r

1
4
,

1
9
9
5
S
h
e
e
t

1

o
f

5

S
i
z
e
D
o
c
u
m
e
n
t

N
u
m
b
e
r

R
E
V

E

d
i
s
p
l
a
y

d
i
s
p
l
a
y
.
s
c
h

c
m
0

c
m
1

c
m
2

c
m
3

c
m
4

c
m
5

c
m
6

c
m
7

c
w
0

c
w
1

c
w
2

c
w
3

c
w
4

c
w
5

c
w
6

c
w
7

s
y
n
0

s
y
n
1

s
y
n
2

s
y
n
3

s
y
n
4

s
y
n
5

s
y
n
6

s
y
n
7

s
e
l
e
c
t

c
l
o
c
k

r
a
n
d
y
s

g
7
p
r
o
j
r
.
s
c
h

c
w
0

c
w
1

c
w
_
s
e
l
0

c
w
_
s
e
l
1

c
w
_
s
e
l
2

p
c
l
k

c
0
0

c
0
1

c
1
1

c
2
0

c
2
1

c
3
0

c
3
1

s
0
0

s
0
1

s
1
0

s
1
1

s
2
0

s
2
1

s
3
0

s
3
1

R
H
C
W
_
E
R
R
O
R

c
1
0

Q

CDU
2
6

F
D

Q

CDU
2
7

F
D

Q

CDU
2
8

F
D

Q

CDU
2
9

F
D

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

S
0

S
1

S
2

O

U
4
2

M
8
-
1

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

S
0

S
1

S
2

O

U
4
3

M
8
-
1

Q

CDU
1
0

F
D

Q

CDU
1
1

F
D

Q

CDU
1
2

F
D

Q

CDU
1
3

F
D

s
1

I
P
A
D

l
o
c
=
p
2
7

s
0

I
P
A
Dl
o
c
=
p
2
8

U
1

I
B
U
F

U
2

I
B
U
F

U
6
8
6

I
N
V

U
6
8
7

I
N
V

Q

CDU
1
4

F
D

Q

CDU
1
5

F
D

Q

CDU
1
6

F
D

Q

CDU
3
0

F
D

Q

CDU
3
1

F
D

Q

CDU
3
2

F
D

F
8
M

F
5
0
0
K

F
1
6
K

F
4
9
0

F
1
5

U
4
4

O
S
C
4

U
5
4

V
C
C

Q
0

Q
1

Q
2

T
C

R D
CC
E

U
5
5

C
8
B
C
R
D

U
5
6

G
N
D

Q

CDU
3
3

F
D

Q

CDU
3
4

F
D

Q

CDU
3
5

F
D

Q

CDU
3
6

F
D

Q

CDU
1
7

F
D

Q

CDU
1
8

F
D

Q

CDU
1
9

F
D

Q

CDU
2
0

F
D

Q

CDU
2
1

F
D

Q

CDU
2
2

F
D

Q

CDU
2
3

F
D

Q

CDU
2
4

F
D

Q

CDU
3
7

F
D

Q

CDU
3
8

F
D

Q

CDU
4
0

F
D

Q

CDU
6
6
6

F
D

c
o
d
e
_
w
o
r
d
_
d
i
s
p

c
w
-
d
i
s
p
.
s
c
h

c
w
0

c
w
1

c
w
2

c
w
3

c
w
4

c
w
5

c
w
6

c
w
7

c
w
8

c
w
9

c
w
1
0

c
w
1
1

c
w
1
2

c
w
1
3

c
w
1
4

c
w
1
5

c
l
o
c
k

Q

CDU
4
1

F
D

O
0

O
1

O
2

O
3

O
4

O
5

O
6

O
7

A
0

A
1

A
2

E
N

U
9

D
3
-
8
E

Q

CDU
2
5

F
D

s
4

I
P
A
Dl
o
c
=
p
2
4

s
3

I
P
A
D

l
o
c
=
p
2
5

s
2

I
P
A
D

l
o
c
=
p
2
6

s
6

I
P
A
D

l
o
c
=
p
2
0

U
3

I
B
U
F

U
4

I
B
U
F

U
5

I
B
U
F

U
6

I
B
U
F

U
7

I
B
U
F

U
6
8
8

I
N
V

U
6
8
9

I
N
V

U
6
9
0

I
N
V

U
6
9
1

I
N
V

U
6
9
2

I
N
V

s
7

I
P
A
D

l
o
c
=
p
1
9

Figure 6. Schematic Sheet 1: Codeword Input Registers, Top Hierarchical Level

A Hardware Implementation of the Nordstrom-Robinson Error Correction CodeCharles R. Yates and Eric Sowers

The key component in accumulating is the latch. The latch clock and clear are part of the external
interface signals, thus providing a completely general Z4 multiplier/accumulator component.

4.6 I/O Circuitry

Figures 6 through 8 consist mainly of the addressing and multiplexing necessary to implement the user
interface functions. The operation of these are relatively straightforward and follow the description in
user interface section.

5 Chip Usage

The text below are usage statistics reported by the PPR utility:

Preliminary evaluation of your selected part, 4003PC84:
51% utilization of io pins. (31 of 61)
67% utilization of function generators. (133 of 200)
45% utilization of clb flip-flops. (90 of 200)
This includes 24 function generators and 24 flip-flops inside hard macros,
which cannot be used for other purposes.
This includes 1 CLB flip-flop that must be left unoccupied, because 1 net
sources an odd number of DFF C pins.

The remaining 33 percent of function generators implies that a second multiplier/accumulator might be
added, enabling more operations to be performed in parallel and thus increasing the operating speed of
the design.

6 Performance Analysis

The design is capable of decoding a message every 64 PCLKs. Since each message consists of 8 bits, this
is equivalent to decoding 8 bits every 64 PCLKs. This series of FPGA has typical maximum clock speed
of around 60 MHz, thus the design is capable of decoding at a maximum data transfer rate FM of

FM =
FCLKM cycles

second
× 1 symbol

64 cycles
× 8 bits

1 symbol

= 7.5 Mbps.

An immediate improvement of a factor of 2 can be made by simply placing the G′−1 matrix in a
separate ROM and introducing another copy of the multiplier/accumulator—probably achievable even
with a 4003.

7 Conclusion

This design is capable of correcting only a few of the total number of correctable errors provided by
the Nordstrom-Robinson code, which in general can correct for any one- and two-symbol errors. The
question that has not yet been answered is, “How does one efficiently generate corrections for all types
of errors?” A possible brute force method would be to simply use a 256x8 ROM to generate an XOR

A Hardware Implementation of the Nordstrom-Robinson Error Correction CodeCharles R. Yates and Eric Sowers

D
a
t
e
:

D
e
c
e
m
b
e
r

1
4
,

1
9
9
5
S
h
e
e
t

2
o
f

5

S
i
z
e
D
o
c
u
m
e
n
t

N
u
m
b
e
r

R
E
V

C

D
0

D
1

S
E

O

U
6
1

M
2
-
1

D
0

D
1

D
3

O
D
2

S
0

S
1

U
5
7

M
4
-
1

c
m
0

c
m
2

c
m
4

c
m
6

D
0

D
1

D
3

O
D
2

S
0

S
1

U
5
8

M
4
-
1

D
0

D
1

D
3

O
D
2

S
0

S
1

U
5
9

M
4
-
1

c
m
1

c
m
3

c
m
5

c
m
7

c
w
0

D
0

D
1

S
E

O

U
6
6

M
2
-
1

U
7
2
1

I
N
V

U
7
2
8

O
B
U
F

U
7
3
5

O
P
A
D

l
o
c
=
p
3
9

U
7
3
6

O
P
A
D

l
o
c
=
p
3
8

U
7
3
7

O
P
A
D

l
o
c
=
p
3
6

U
7
3
8

O
P
A
D

l
o
c
=
p
3
5

U
7
3
9

O
P
A
D

l
o
c
=
p
2
9

U
7
2
2

I
N
V

U
7
2
3

I
N
V

U
7
2
4

I
N
V

U
7
2
5

I
N
V

U
7
2
9

O
B
U
F

U
7
3
0

O
B
U
F

U
7
3
1

O
B
U
F

U
7
3
2

O
B
U
F

A CB D FE G

A
0

A
1

A
2

A
3

R
B
O

R
B
I

H
M
3

D
7
S
E
G
H

U
7
2
0

G
N
D

U
7
4
2

G
N
D

U
7
4
3

G
N
D

D
0

D
1

S
E

O

U
6
2

M
2
-
1

D
0

D
1

D
3

O
D
2

S
0

S
1

U
6
0

M
4
-
1

c
w
1

c
w
2

c
w
3

c
w
4

c
w
6

c
w
5

s
e
l
e
c
t

c
w
7

D
0

D
1

S
E

O

U
6
7

M
2
-
1

U
7
2
6

I
N
V

U
7
2
7

I
N
V

U
7
3
3

O
B
U
F

U
7
3
4

O
B
U
F

U
7
4
4

I
N
V

U
7
4
5

O
B
U
F

U
7
4
0

O
P
A
D

l
o
c
=
p
4
0

U
7
4
1

O
P
A
D

l
o
c
=
p
4
4

U
7
4
6

O
P
A
D

l
o
c
=
p
3
7

D
0

D
1

D
3

O
D
2

S
0

S
1

U
6
8

M
4
-
1

D
0

D
1

D
3

O
D
2

S
0

S
1

U
6
9

M
4
-
1

s
y
n
0

s
y
n
1

s
y
n
2

s
y
n
4

s
y
n
6

s
y
n
3

s
y
n
5

s
y
n
7

c
l
o
c
k

U
7
1

G
N
D

U
7
2

V
C
C

Q
0

Q
1

Q
2

Q
3

R C
E

T
C

CU
7
0

C
1
6
B
C
R

U
6
6
7

I
N
V

U
6
6
9

O
B
U
F

U
6
7
1

O
P
A
D

l
o
c
=
p
6
0

Figure 7. Schematic Sheet 2: Decoded Message MUX and Syndrome/Decoded Message Display

A Hardware Implementation of the Nordstrom-Robinson Error Correction CodeCharles R. Yates and Eric Sowers

mask that corrects the data. The input to the ROM would be the 8 bit syndrome, and the output the
XOR mask to be used on CWL. However, according to the memgen output, such a ROM would require
about 2048 of the 3000 available gates in the 4003. The discovery of an efficient method of classifying
and correcting errors probably lies in gleaning insights into the theory on which the NR code is based.

Another problem is that of partitioning errors into two sets: correctable and uncorrectable. That is to
say, it would be desirable to be able to determine when an error is not correctable, thus enabling the
receiver to take appropriate action such as sending a request to the transmitter to resend the data. To
date, no such partition is known to the authors.

The chip utilization indicates that perhaps some further parallel processing is possible (e.g., by adding
a second multiplier/accumulator) while remaining within the 4003 family. It is significant to note that
the amount of chip area required by the user interface is not negligible. If this were a typical decoding
device, such functions would not be required and further parallelization may be possible. Since the
corrected message is not always required, a small average speedup could be achieved even with the
current implementation by only calculating the corrected message when it is required.

Of course, there are much denser FPGAs available today, and a full custom solution would provide the
maximum real estate and speed. A very rough estimate is that a factor of 16 speedup (8 times the
chip area, double the maximum clock speed) is possible with these alternatives, putting the maximum
transfer rate at over 100 Mbps.

8 References

[1] Shu Lin, An Introduction to Error-Correcting Codes (Prentice-Hall, Inc., Englewood Cliffs, New
Jersey, 1970).

[2] C. E. Shannon, “A Mathematical Theory of Communication,” Bell Syst. Tech. J., vol. 27, pp.379-
423 (July 1948), and pp.623-656 (October 1948).

[3] John R. Durbin, Modern Algebra: An Introduction (third edition, John Wiley and Sons, 1992).

A Hardware Implementation of the Nordstrom-Robinson Error Correction CodeCharles R. Yates and Eric Sowers

D
a
t
e
:

D
e
c
e
m
b
e
r

1
4
,

1
9
9
5
S
h
e
e
t

3

o
f

5

S
i
z
e
D
o
c
u
m
e
n
t

N
u
m
b
e
r

R
E
V

B

U
1
7
3

O
B
U
F

U
1
8
0

O
P
A
D

l
o
c
=
p
4
9

U
1
6
6

I
N
V

A CB D FE G

A
0

A
1

A
2

A
3

R
B
O

R
B
I

H
M
2

D
7
S
E
G
H

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

S
0

S
1

S
2

O

U
7
6

M
8
-
1

c
w
0

c
w
2

c
w
4

c
w
6

c
w
8

c
w
1
0

c
w
1
2

c
w
1
4

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

S
0

S
1

S
2

O

U
7
7

M
8
-
1

c
w
1

c
w
3

U
1
6
7

I
N
V

U
1
6
8

I
N
V

U
1
6
9

I
N
V

U
1
7
4

O
B
U
F

U
1
7
5

O
B
U
F

U
1
7
6

O
B
U
F

U
1
8
1

O
P
A
D

l
o
c
=
p
4
8

U
1
8
2

O
P
A
D

l
o
c
=
p
4
7

U
1
8
3

O
P
A
D

l
o
c
=
p
4
6

U
1
7
7

O
B
U
F

U
1
7
8

O
B
U
F

U
1
7
9

O
B
U
F

U
1
8
4

O
P
A
D

l
o
c
=
p
4
5

U
1
8
5

O
P
A
D

l
o
c
=
p
5
0

U
1
8
6

O
P
A
D

l
o
c
=
p
5
1

U
1
7
0

I
N
V

U
1
7
1

I
N
V

U
1
7
2

I
N
V

U
8
2

G
N
D

c
w
5

c
w
7

c
w
9

c
w
1
1

c
w
1
3

c
w
1
5

Q 0
Q 1

Q 2
Q 3

R
C E

T C C

U
7
8

C
1
6
B
C
R

U
8
1

N
O
R
3

U
5
3

I
N
V

U
3
9

O
B
U
F

U
1
8
7

O
P
A
D

l
o
c
=
p
4
1

U
7
9

V
C
C

U
8
0

G
N
D

c
l
o
c
k

Figure . Schematic Sheet 3: Input Codeword Display

A Hardware Implementation of the Nordstrom-Robinson Error Correction CodeCharles R. Yates and Eric Sowers

A Hardware Implementation of the Nordstrom-Robinson Error Correction CodeCharles R. Yates and Eric Sowers

D
a
t
e
:

D
e
c
e
m
b
e
r

1
4
,

1
9
9
5
S
h
e
e
t

4

o
f

5

S
i
z
e
D
o
c
u
m
e
n
t

N
u
m
b
e
r

R
E
V

D

S
3
0

S
3
1

Q
D R C
E

CU
9
5

F
D
C
R

Q
D R C
E

CU
9
6

F
D
C
R

U
1
1
2

N
O
R
2

U
6
9
7

G
N
D

D
0

D
1

S
E

O

U
8
9

M
2
-
1

A
C
C
C
L
R

U
8
7

A
N
D
3

Q
0

Q
1

Q
2

Q
3

R D

D
3

Q
4

D
0

D
1

D
2

P
E

C
E

Q
5

U
D

D
4

T
C

CD
5

U
8
3

C
6
4
B
U
D
R
D

U
8
6

V
C
C

U
8
8

A
N
D
2

O
0

O
1

O
2

O
3

O
4

O
5

O
6

O
7

A
0

A
1

A
2

E
N

U
7
4
7

D
3
-
8
E

U
7
4
8

A
N
D
3

S
3
_
S
E
L
E
C
T

S
2
_
S
E
L
E
C
T

S
1
_
S
E
L
E
C
T

Q
D R C
E

CU
9
7

F
D
C
R

Q
D R C
E

CU
9
8

F
D
C
R

Q
D R C
E

CU
9
9

F
D
C
R

U
1
1
3

N
O
R
2

S
2
0

S
2
1

S
1
0

S
1
1

S
0
0

Q
D R C
E

CU
1
0
0

F
D
C
R

Q
D R C
E

CU
1
0
1

F
D
C
R

U
1
1
4

N
O
R
2

m
u
l
t
a
c
c

m
u
l
t
a
c
c
.
s
c
h

M
0
0

M
0
1

M
1
0

M
1
1

C
L
O
C
K

C
L
E
A
R

A
C
C
0

A
C
C
1

S
0
_
S
E
L
E
C
T

C
3
_
S
E
L
E
C
T

C
2
_
S
E
L
E
C
T

C
1
_
S
E
L
E
C
T

C
0
_
S
E
L
E
C
T

A
0
A
1
A
2
A
3
A
4
A
5

O
0

O
1

U
7
1
9

H
T

H
T
_
S
E
L
0

H
T
_
S
E
L
1

H
T
_
S
E
L
2

H
T
_
S
E
L
3

H
T
_
S
E
L
4

H
T
_
S
E
L
5

U
8
4

G
N
D

U
6
9
6

G
N
D

C
W
0

C
W
1

R
E
G
_
C
L
O
C
K

Q
D R C
E

CU
1
0
2

F
D
C
R

U
1
1
5

N
O
R
2

U
6
8
2

A
N
D
4

U
6
8
4

O
B
U
F

U
6
8
5

O
P
A
D

l
o
c
=
p
6
1

U
6
9
3

I
N
V

U
6
9
4

I
N
V

S
0
1

C
W
_
S
E
L
0

C
W
_
S
E
L
1

U
6
9
5

I
N
V

C
W
_
S
E
L
2

R
H
C
W
_
E
R
R
O
R

U
1
1
6

A
N
D
3

U
1
1
7

A
N
D
3

U
1
1
8

A
N
D
3

U
1
2
0

O
R
4

Q
D R C
E

CU
1
0
3

F
D
C
R

Q
D R C
E

CU
1
0
4

F
D
C
R

Q
D R C
E

CU
1
0
5

F
D
C
R

C
3
0

C
3
1

U
7
0
0

O
B
U
F

U
7
0
1

O
B
U
F

U
7
0
2

O
P
A
D

l
o
c
=
p
5
9

U
7
0
3

O
P
A
D

l
o
c
=
p
5
8

U
7
1
4

O
B
U
F

U
7
1
5

O
B
U
F

U
7
1
6

O
P
A
D

l
o
c
=
p
6
5

U
7
1
7

O
P
A
D

l
o
c
=
p
6
2

U
6
9
8

I
N
V

U
6
9
9

I
N
V

U
7
1
2

I
N
V

U
7
1
3

I
N
V

P
C
L
K

U
7
0
6

I
N
V

U
7
0
7

I
N
V

U
7
0
8

O
B
U
F

U
7
0
9

O
B
U
F

U
7
1
0

O
P
A
D

l
o
c
=
p
5
7

U
7
1
1

O
P
A
D

l
o
c
=
p
6
6

Q
D R C
E

CU
1
0
6

F
D
C
R

Q
D R C
E

CU
1
0
7

F
D
C
R

C
2
0

C
2
1

C
1
0

U
1
1
9

A
N
D
3

Q
D R C
E

CU
1
0
8

F
D
C
R

Q
D R C
E

CU
1
0
9

F
D
C
R

C
1
1

C
0
0

Q
D R C
E

CU
1
1
0

F
D
C
R

C
0
1

Figure 9. Schematic Sheet 4: Timing Generator, ROM, and S and C Registers

A Hardware Implementation of the Nordstrom-Robinson Error Correction CodeCharles R. Yates and Eric Sowers

A Hardware Implementation of the Nordstrom-Robinson Error Correction CodeCharles R. Yates and Eric Sowers

D
a
t
e
:

D
e
c
e
m
b
e
r

1
3
,

1
9
9
5
S
h
e
e
t

5

o
f

5

S
i
z
e
D
o
c
u
m
e
n
t

N
u
m
b
e
r

R
E
V

B

U
1
2
7

A
N
D
3

U
1
2
5

O
R
2

x
1

U
1
2
1

I
N
V

M
0
1

x
0 y
1

U
1
2
2

I
N
V

M
0
0

M
1
1

U
1
2
9

O
R
2

C
I

A
0

A
1

B
0

B
1

S
0

S
1

C
O

U
1
3
1

A
D
D
2

A
C
C
0

A
C
C
1

U
1
3
5

G
N
D

U
1
2
8

A
N
D
3

U
1
2
6

O
R
2

y
0

U
1
2
3

I
N
V

U
1
2
4

I
N
V

M
1
0

U
1
3
0

A
N
D
2

Q
D R C
E

CU
1
3
2

F
D
C
R

U
1
3
4

V
C
C

C
L
O
C
K

C
L
E
A
R

Q
D R C
E

CU
1
3
3

F
D
C
R

Figure 10. Schematic Sheet 5: Z4 Multiplier/Accumulator

A Hardware Implementation of the Nordstrom-Robinson Error Correction CodeCharles R. Yates and Eric Sowers

