

Author Randy Yates

Technical Reference Derivation of the Shannon Spectral Efficiency Limit 1 (4) Time Rev No. Reference 10-Apr-2014 PA2 n/a 22:22 shannonlimit.tex

Derivation of the Shannon Spectral Efficiency Limit

Date

Randy Yates 10-Apr-2014

http://www.digitalsignallabs.com

Typeset using $LAT_EX 2_{\mathcal{E}}$

Digital Signal Labs		Technical Refere Derivation of the		n Spectral Efficien	cy Limit 2 (4)
Author Randy Yates	_{Date} 10–Apr–2014	^{Time} 22:22	_{Rev} PA2	_{No.} n/a	Reference shannonlimit.tex
-	10 / 01 / 201 /			, «	
Contents					
1 Introduction					2
2 Derivation					2
3 Conclusion					4
List of Figures					

1	Capacity Curve	 3

List of Tables

1 Introduction

In digital communication systems, spectral efficiency, η , is defined as

$$\eta = \frac{C}{W},\tag{1}$$

where *C* is the channel capacity (in [bits/second]) and *W* is the channel bandwidth (in [Hz]).

Spectral efficiency provides a measure of how efficiently a communication scheme utilizes bandwidth. For any fixed capacity *C*, spectral efficiency approaches zero as the bandwidth approaches infinity. This is the absolute worst efficiency possible (infinite bandwidth!).

Shannon's famous capacity theorem can be rearranged to provide a relationship between spectral efficiency and SNR, or E_b/N_0^{-1} (see Figure 1). It appears from the plot that the relationship approaches an asymptotic limit as $\eta \rightarrow 0$. In this paper we show this limit is ln 2, or approximately -1.59 dB.

2 Derivation

Shannon's capacity theorem is stated in [2] as follows:

Shannon's Capacity Theorem. Let P be the average transmitter power, and suppose the noise is white thermal noise of power N in the band W. By sufficiently complicated encoding systems it is possible to transmit binary digits at a rate

$$C = W \log_2 \left(1 + \frac{P}{N} \right), \tag{2}$$

with as small a frequency of errors as desired. It is not possible by any encoding method to send at a higher rate and have an arbitrarily low frequency of errors.

If the energy per bit transmitted is denoted E_b and we are transmitting *C* bits per second, then the signal power $P = CE_b$. Since the noise is white, the noise power in a bandwidth *W* is WN_0 where N_0 is the noise spectral density, and we may rewrite the capacity equation as

$$\frac{C}{W} = \log_2\left(1 + \frac{E_b}{N_0}\frac{C}{W}\right).$$
(3)

¹For a good discussion on SNR and E_b/N_0 see section 5.2.2 in [1].

Digital Signal Labs		Technical Reference Derivation of the Shannon Spectral Efficiency Limit			cy Limit 3 (4)
Author	_{Date}	^{Time}	_{Rev}	^{№.}	Reference
Randy Yates	10–Apr–2014	22:22	PA2	n/a	shannonlimit.tex

If we let $\eta = C/W$ (the spectral efficiency), then we can reexpress in terms of E_b/N_0 as

$$\frac{E_b}{N_0} = \frac{2^{\eta} - 1}{\eta},$$
(4)

that is, we can express E_b/N_0 as a function of η , which is plotted in Figure 1.

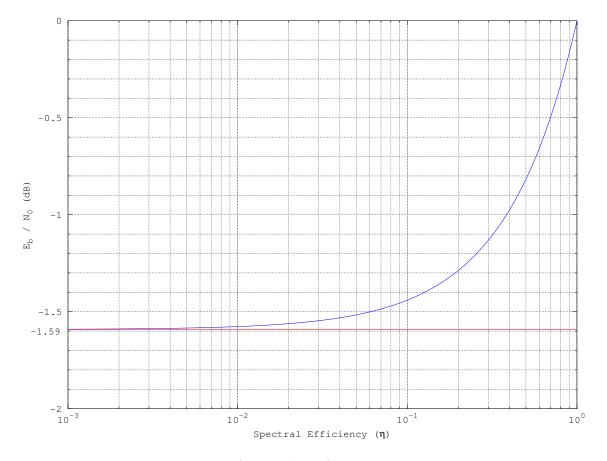


Figure 1: Capacity Curve

The red line is the asymptote of the curve as η approaches zero and is approximately -1.59 dB (ln 2). We derive this result as follows.

The asymptotic value we seek, *a*, is the limit of E_b/N_o as η approachs zero.

$$a = \lim_{\eta \to 0} \frac{2^{\eta} - 1}{\eta}.$$
(5)

Since the argument of the limit is a rational function $f(\eta)/g(\eta)$ and f(0) = g(0) = 0, we may apply L'Hopital's rule, which states [3] that, under these conditions,

$$\lim_{\eta \to 0} \frac{f(\eta)}{g(\eta)} = \lim_{\eta \to 0} \frac{f'(\eta)}{g'(\eta)}.$$
(6)

Public Information

Digital Signal Labs		Technical Reference Derivation of the Shannon Spectral Efficiency Limit			cy Limit 4 (4)
Author	_{Date}	^{Time}	_{Rev}	_{No.}	Reference
Randy Yates	10–Apr–2014	22:22	PA2	n/a	shannonlimit.tex

In order to take the derivative of the numerator, express the value 2 in terms of the natural logarithm:

$$2 = e^{\ln 2}.\tag{7}$$

Then

$$2^{\eta} = \left(e^{\ln 2}\right)^{\eta} \tag{8}$$

$$=e^{\eta\ln 2} \tag{9}$$

and

$$\frac{\mathrm{d}2^{\eta}}{\mathrm{d}\eta} = \frac{\mathrm{d}e^{u}}{\mathrm{d}u}\frac{\mathrm{d}u}{\mathrm{d}\eta},\tag{10}$$

where $u = \eta \ln 2$. Therefore

$$a = \lim_{\eta \to 0} \frac{\mathrm{d}2^{\eta}}{\mathrm{d}\eta} \tag{11}$$

$$=\lim_{\eta\to 0} e^u \ln 2 \tag{12}$$

$$= \lim_{\eta \to 0} \left(e^{\ln 2} \right)^{\eta} \ln 2$$
 (13)

$$= \ln 2. \blacksquare \tag{14}$$

3 Conclusion

In a digital communication system, we can trade off bandwidth (spectral efficiency) for E_b/N_0 , as seen from Figure 1. For example, a spectral efficiency of one requires an E_b/N_0 of approximately 0 dB to reach capacity. But if we allow our spectral efficiency to be reduced to 0.1, we can reach the Shannon capacity limit with 1.45 dB less power.

However, this tradeoff has a limit in that, no matter how much bandwidth you allow a signal to have, you can never use less than -1.59 dB E_b/N_0 and still achieve capacity.

References

- [1] Bernard Sklar, Digital Communications, 2nd ed. Prentice Hall P T R, 2001.
- [2] C. E. Shannon, "Communication in the presence of noise," *Proceedings of the Institute of Radio Engineers*, vol. 37, pp. 10–21, 1949.
- [3] S. K. Stein, Calculus and Analytic Geometry, 2nd ed. McGraw-Hill, 1973.